Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China

2019 ◽  
Vol 13 (2) ◽  
pp. 430-443 ◽  
Author(s):  
Zhitao Wu ◽  
Mingyue Wang ◽  
Hong Zhang ◽  
Ziqiang Du
CATENA ◽  
2018 ◽  
Vol 167 ◽  
pp. 429-439 ◽  
Author(s):  
Xueyong Zou ◽  
Jifeng Li ◽  
Hong Cheng ◽  
Jingpu Wang ◽  
Chunlai Zhang ◽  
...  

2019 ◽  
Vol 271 ◽  
pp. 102-115 ◽  
Author(s):  
Gangfeng Zhang ◽  
Cesar Azorin-Molina ◽  
Peijun Shi ◽  
Degen Lin ◽  
Jose A. Guijarro ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 423-435
Author(s):  
Xueyong Zou ◽  
Huiru Li ◽  
Wei Liu ◽  
Jingpu Wang ◽  
Hong Cheng ◽  
...  

2021 ◽  
Vol 127 ◽  
pp. 107599
Author(s):  
Hanbing Zhang ◽  
Jian Peng ◽  
Chaonan Zhao ◽  
Zihan Xu ◽  
Jianquan Dong ◽  
...  

2021 ◽  
Vol 83 ◽  
pp. 133-146
Author(s):  
F Zhang ◽  
J Wang ◽  
X Zou ◽  
R Mao ◽  
DY Gong ◽  
...  

Wind erosion is largely determined by wind erosion climatic erosivity. In this study, we examined changes in wind erosion climatic erosivity during 4 seasons across northern China from 1981-2016 using 2 models: the wind erosion climatic erosivity of the Wind Erosion Equation (WEQ) model and the weather factor from the Revised Wind Erosion Equation (RWEQ) model. Results showed that wind erosion climatic erosivity derived from the 2 models was highest in spring and lowest in winter with high values over the Kumtag Desert, the Qaidam Basin, the boundary between Mongolia and China, and the Hulunbuir Sandy Land. In spring and summer, wind erosion climatic erosivity showed decreasing trends in whole of northern China from 1981-2016, whereas there was an increasing trend in wind erosion climatic erosivity over the Gobi Desert from 1992-2011. For the weather factor of the RWEQ model, the difference between northern Northwest China and the Gobi Desert and eastern-northern China was much larger than that of the wind erosion climatic erosivity of the WEQ model. In addition, in contrast to a decreasing trend in the weather factor of the RWEQ model over southern Northwest China during spring and summer from 1981-2016, the wind erosion climatic erosivity of the WEQ model showed a decreasing trend for 1981-1992 and an increasing trend for 1992-2011 over southern Northwest China. According to a comparison between dust emission and wind erosion climatic erosivity, the 2 models have the ability to project changes in future wind erosion in northern China.


2020 ◽  
Vol 11 (4) ◽  
pp. 484-496
Author(s):  
Feng Zhang ◽  
Jing’ai Wang ◽  
Xueyong Zou ◽  
Rui Mao ◽  
Daoyi Gong ◽  
...  

2020 ◽  
Vol 12 (20) ◽  
pp. 3430
Author(s):  
Wei Wang ◽  
Alim Samat ◽  
Yongxiao Ge ◽  
Long Ma ◽  
Abula Tuheti ◽  
...  

A lack of long-term soil wind erosion data impedes sustainable land management in developing regions, especially in Central Asia (CA). Compared with large-scale field measurements, wind erosion modeling based on geospatial data is an efficient and effective method for quantitative soil wind erosion mapping. However, conventional local-based wind erosion modeling is time-consuming and labor-intensive, especially when processing large amounts of geospatial data. To address this issue, we developed a Google Earth Engine-based Revised Wind Erosion Equation (RWEQ) model, named GEE-RWEQ, to delineate the Soil Wind Erosion Potential (SWEP). Based on the GEE-RWEQ model, terabytes of Remote Sensing (RS) data, climate assimilation data, and some other geospatial data were applied to produce monthly SWEP with a high spatial resolution (500 m) across CA between 2000 and 2019. The results show that the mean SWEP is in good agreement with the ground observation-based dust storm index (DSI), satellite-based Aerosol Optical Depth (AOD), and Absorbing Aerosol Index (AAI), confirming that GEE-RWEQ is a robust wind erosion prediction model. Wind speed factors primarily determined the wind erosion in CA (r = 0.7, p < 0.001), and the SWEP has significantly increased since 2011 because of the reversal of global terrestrial stilling in recent years. The Aral Sea Dry Lakebed (ASDLB), formed by shrinkage of the Aral Sea, is the most severe wind erosion area in CA (47.29 kg/m2/y). Temporally, the wind erosion dominated by wind speed has the largest spatial extent of wind erosion in Spring (MAM). Meanwhile, affected by the spatial difference of the snowmelt period in CA, the wind erosion hazard center moved from the southwest (Karakum Desert) to the middle of CA (Kyzylkum Desert and Muyunkum Desert) during spring. According to the impacts of land cover change on the spatial dynamic of wind erosion, the SWEP of bareland was the highest, while that of forestland was the lowest.


Sign in / Sign up

Export Citation Format

Share Document