Integration of 1D and 3D modeling schemes to establish the Farewell Formation as a self-sourced reservoir in Kupe Field, Taranaki Basin, New Zealand

Author(s):  
S. M. Talha Qadri ◽  
Md Aminul Islam ◽  
Mohamad Ragab Shalaby ◽  
Syed Haroon Ali
2021 ◽  
Vol 91 (9) ◽  
pp. 945-968
Author(s):  
Karen E. Higgs ◽  
Stuart Munday ◽  
Anne Forbes ◽  
Karsten F. Kroeger

ABSTRACT Paleocene sandstones in the Kupe Field of Taranaki Basin, New Zealand, are subdivided into two diagenetic zones, an upper kaolinite–siderite (K-S) zone and a lower chlorite–smectite (Ch-Sm) zone. Petrographic observations show that the K-S zone has formed from diagenetic alteration of earlier-formed Ch-Sm sandstones, whereby biotite and chlorite–smectite have been altered to form kaolinite and siderite, and plagioclase has reacted to form kaolinite and quartz. These diagenetic zones can be difficult to discriminate from downhole bulk-rock geochemistry, which is largely due to a change in element-mineral affinities without a wholesale change in element abundance. However, some elements have proven useful for delimiting the diagenetic zones, particularly Ca and Na, where much lower abundances in the K-S zone are interpreted to represent removal of labile elements during diagenesis. Multivariate analysis has also proven an effective method of distinguishing the diagenetic zones by highlighting elemental affinities that are interpreted to represent the principal diagenetic phases. These include Fe-Mg-Mn (siderite) in the K-S zone, and Ca-Mn (calcite) and Fe-Mg-Ti-Y-Sc-V (biotite and chlorite–smectite) in the Ch-Sm zone. Results from this study demonstrate that the base of the K-S zone approximately corresponds to the base of the current hydrocarbon column. An assessment with 1D basin models and published stable-isotope data show that K-S diagenesis is likely to have occurred during deep-burial diagenesis in the last 4 Myr. Modeling predicts that CO2-rich fluids were generating from thermal decarboxylation of intraformational Paleocene coals at this time, and accumulation of high partial pressures of intraformational CO2 in the hydrocarbon column is considered a viable catalyst for the diagenetic reactions. Variable CO2 concentrations and residence times are interpreted to be the reason for different levels of K-S diagenesis, which is supported by a clear relationship between the presence or absence of a well-developed K-S zone and the present-day reservoir-corrected CO2 content.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sema Özkadif ◽  
Emrullah Eken ◽  
İbrahim Kalaycı

The present study has been performed to reveal biometrical aspects and diameter-related differences in terms of sexes regarding pelvic cavity via three-dimensional (3D) reconstruction by using multidetector computed tomography (MDCT) images of pelvic cavity of the New Zealand rabbit. A total of 16 adult New Zealand rabbits, including 8 males and 8 females, were used in this study. Under anesthesia, the images obtained from MDCT were stacked and overlaid to reconstruct the 3D model of the pelvic cavity using 3D modeling software (Mimics 13.1). Measurements, such as the conjugate, transverse, and vertical diameters of the pelvic cavity, and the pelvic inclination were calculated and analyzed statistically. Biometrical differences of the pelvic diameters in New Zealand rabbits of both sexes were shown clearly. It was concluded that the pelvic diameters revealed by 3D modeling techniques can shed light on medical students who take both anatomy training and gynecological applications. The authors hope that the synchronization of medical approaches may give rise to novel diagnostic and therapeutic developments related to pelvic cavity.


2020 ◽  
Vol 90 (6) ◽  
pp. 651-668
Author(s):  
Sean R. O'Neill ◽  
Stuart J. Jones ◽  
Peter J.J. Kamp

ABSTRACT Paleocene marginal marine to shoreface glauconitic sandstones (F-Sands) of the Farewell Formation from the Maui Field in Taranaki Basin, New Zealand, demonstrate a diagenetic evolution driven by major shifts in acidic pore-water composition, rate of burial, and clay-mineral authigenesis. Mechanical compaction is the principal porosity-reducing mechanism during the first 2500 m of burial of the F-Sands. Continued mechanical compaction with long-grain contacts, concavo-convex contacts, and deformed liable grains are common throughout the F-Sands. Late-stage flow of dissolved CO2 in the pore fluids of the Farewell Formation is thought to have been generated from thermal decarboxylation of coaly source rocks. The circulation of these CO2-rich fluids will have dissolved into undersaturated pore fluids and partially catalyzed dissolution of feldspar and quartz, producing ions for the precipitation of kaolinite and chlorite. Timing of the diagenetic reactions, as determined using paragenetic observations, fluid-inclusion analysis, and burial history modeling, suggests that the quartz cements formed at a late stage (> 100°C, corresponding to 0–7 Ma) and is consistent with the migration of hydrocarbons, and associated CO2, into the F-Sand reservoir. Significant secondary porosity is generated through the dissolution of feldspar, which is preserved due to late-stage of occurrence at close to present-day maximum burial. Dissolved solutes in the F-Sands sandstones are being preferentially precipitated in interbedded and surrounding fine-grained heterolithic siltstone to very fine-grained sandstone beds, leading to enhanced heterogeneity and preservation of secondary porosity. This study provides an improved understanding for diagenetic reconstruction of marginal marine to shoreface facies.


2017 ◽  
Vol 10 (14) ◽  
Author(s):  
Syed Mohammad Talha Qadri ◽  
Mohammad Aminul Islam ◽  
Mohamed Ragab Shalaby ◽  
Abul Khaleq Mohammad Eahsan ul Haque

1999 ◽  
Vol 190 ◽  
pp. 563-566
Author(s):  
J. D. Pritchard ◽  
W. Tobin ◽  
J. V. Clausen ◽  
E. F. Guinan ◽  
E. L. Fitzpatrick ◽  
...  

Our collaboration involves groups in Denmark, the U.S.A. Spain and of course New Zealand. Combining ground-based and satellite (IUEandHST) observations we aim to determine accurate and precise stellar fundamental parameters for the components of Magellanic Cloud Eclipsing Binaries as well as the distances to these systems and hence the parent galaxies themselves. This poster presents our latest progress.


Sign in / Sign up

Export Citation Format

Share Document