Three-Dimensional Petrophysical Modelling and Volumetric Analysis to Model the Reservoir Potential of the Kupe Field, Taranaki Basin, New Zealand

2018 ◽  
Vol 28 (2) ◽  
pp. 369-392 ◽  
Author(s):  
S. M. Talha Qadri ◽  
Md. Aminul Islam ◽  
Mohamed Ragab Shalaby
2006 ◽  
Vol 163 (7) ◽  
pp. 1252-1263 ◽  
Author(s):  
M. Mehmet Haznedar ◽  
Monte S. Buchsbaum ◽  
Erin A. Hazlett ◽  
Elizabeth M. LiCalzi ◽  
Charles Cartwright ◽  
...  

2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


Author(s):  
Angela Liu ◽  
David Carradine

The goal of this study is to develop a racking model of plasterboard-sheathed timber walls as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand. Residential buildings in New Zealand are primarily stand-alone low-rise LTF buildings, and their bracing elements are commonly plasterboard-sheathed LTF walls. It is an essential part of performance-based seismic designs of LTF buildings to be able to simulate the racking performance of plasterboard walls. In this study, racking test results of 12 plasterboard walls were collected and studied to gain insight into the seismic performance of plasterboard-sheathed LTF walls. The racking performance of these walls was examined in terms of stiffness/strength degradation, displacement capacity, superposition applicability and failure mechanisms. Subsequently, a mathematical analysis model for simulating racking performance of LTF plasterboard walls is developed and presented. The developed racking model is a closed-form wall model and could be easily used for conducting three-dimensional non-linear push-over studies of seismic performance of LTF buildings.


2021 ◽  
Vol 91 (9) ◽  
pp. 945-968
Author(s):  
Karen E. Higgs ◽  
Stuart Munday ◽  
Anne Forbes ◽  
Karsten F. Kroeger

ABSTRACT Paleocene sandstones in the Kupe Field of Taranaki Basin, New Zealand, are subdivided into two diagenetic zones, an upper kaolinite–siderite (K-S) zone and a lower chlorite–smectite (Ch-Sm) zone. Petrographic observations show that the K-S zone has formed from diagenetic alteration of earlier-formed Ch-Sm sandstones, whereby biotite and chlorite–smectite have been altered to form kaolinite and siderite, and plagioclase has reacted to form kaolinite and quartz. These diagenetic zones can be difficult to discriminate from downhole bulk-rock geochemistry, which is largely due to a change in element-mineral affinities without a wholesale change in element abundance. However, some elements have proven useful for delimiting the diagenetic zones, particularly Ca and Na, where much lower abundances in the K-S zone are interpreted to represent removal of labile elements during diagenesis. Multivariate analysis has also proven an effective method of distinguishing the diagenetic zones by highlighting elemental affinities that are interpreted to represent the principal diagenetic phases. These include Fe-Mg-Mn (siderite) in the K-S zone, and Ca-Mn (calcite) and Fe-Mg-Ti-Y-Sc-V (biotite and chlorite–smectite) in the Ch-Sm zone. Results from this study demonstrate that the base of the K-S zone approximately corresponds to the base of the current hydrocarbon column. An assessment with 1D basin models and published stable-isotope data show that K-S diagenesis is likely to have occurred during deep-burial diagenesis in the last 4 Myr. Modeling predicts that CO2-rich fluids were generating from thermal decarboxylation of intraformational Paleocene coals at this time, and accumulation of high partial pressures of intraformational CO2 in the hydrocarbon column is considered a viable catalyst for the diagenetic reactions. Variable CO2 concentrations and residence times are interpreted to be the reason for different levels of K-S diagenesis, which is supported by a clear relationship between the presence or absence of a well-developed K-S zone and the present-day reservoir-corrected CO2 content.


ESC CardioMed ◽  
2018 ◽  
pp. 88-92
Author(s):  
Luigi Badano ◽  
Denisa Muraru

The left and right atria are dynamic structures that play an integral role in cardiac performance by modulating the respective ventricular filling. This function is accomplished by their role as a reservoir for venous return during ventricular systole, a conduit for venous return during early ventricular diastole, and a booster pump for ventricular filling during late diastole. Recent advances in cardiac imaging allow the accurate assessment of the geometry and phasic functions of both atria. Two- and three-dimensional echocardiography enables a volumetric analysis of atrial function, and both Doppler tissue imaging and speckle-tracking echocardiography allow the assessment of the deformation of atrial myocardium.


2019 ◽  
Vol 43 (4) ◽  
pp. 231-238 ◽  
Author(s):  
Hyeonjong Lee ◽  
Yong Kwon Chae ◽  
Hyo-Seol Lee ◽  
Sung Chul Choi ◽  
Ok Hyung Nam

Objectives: This study was designed to compare the surface morphologies and volumes of posterior prefabricated zirconia crowns and posterior stainless steel crowns (SSCs) using digitalized three-dimensional (3D) reconstructed images. Study design: We tested prefabricated zirconia crowns (NuSmile ZR; Orthodontic Technologies, Houston, TX, USA) and SSCs (Kids Crown; Shinhung, Seoul, Korea) used to restore left maxillary and mandibular molars. A Rainbow scanner (Dentium, Seoul, Korea) was used to digitise the inner and outer surface morphologies of all crowns. The data were superimposed and evaluated using 3D software. The differences between the outer and inner surfaces and inner volume were measured. Results: The differences between the two types of crowns differed by tooth surface. At the occlusal surface, the differences were greater at the cusp tip than the fossa. At the axial level, the differences decreased toward the gingival margins. Also, relative volumetric ratios varied. Conclusions: Tooth preparation prior to placement of prefabricated zirconia crowns requires special consideration. Greater amounts of tooth reduction are necessary for posterior zirconia crowns than for SSCs. The occlusal surface requires more tooth reduction than the axial surface and the gingival margin.


Sign in / Sign up

Export Citation Format

Share Document