diagenetic reactions
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 91 (9) ◽  
pp. 945-968
Author(s):  
Karen E. Higgs ◽  
Stuart Munday ◽  
Anne Forbes ◽  
Karsten F. Kroeger

ABSTRACT Paleocene sandstones in the Kupe Field of Taranaki Basin, New Zealand, are subdivided into two diagenetic zones, an upper kaolinite–siderite (K-S) zone and a lower chlorite–smectite (Ch-Sm) zone. Petrographic observations show that the K-S zone has formed from diagenetic alteration of earlier-formed Ch-Sm sandstones, whereby biotite and chlorite–smectite have been altered to form kaolinite and siderite, and plagioclase has reacted to form kaolinite and quartz. These diagenetic zones can be difficult to discriminate from downhole bulk-rock geochemistry, which is largely due to a change in element-mineral affinities without a wholesale change in element abundance. However, some elements have proven useful for delimiting the diagenetic zones, particularly Ca and Na, where much lower abundances in the K-S zone are interpreted to represent removal of labile elements during diagenesis. Multivariate analysis has also proven an effective method of distinguishing the diagenetic zones by highlighting elemental affinities that are interpreted to represent the principal diagenetic phases. These include Fe-Mg-Mn (siderite) in the K-S zone, and Ca-Mn (calcite) and Fe-Mg-Ti-Y-Sc-V (biotite and chlorite–smectite) in the Ch-Sm zone. Results from this study demonstrate that the base of the K-S zone approximately corresponds to the base of the current hydrocarbon column. An assessment with 1D basin models and published stable-isotope data show that K-S diagenesis is likely to have occurred during deep-burial diagenesis in the last 4 Myr. Modeling predicts that CO2-rich fluids were generating from thermal decarboxylation of intraformational Paleocene coals at this time, and accumulation of high partial pressures of intraformational CO2 in the hydrocarbon column is considered a viable catalyst for the diagenetic reactions. Variable CO2 concentrations and residence times are interpreted to be the reason for different levels of K-S diagenesis, which is supported by a clear relationship between the presence or absence of a well-developed K-S zone and the present-day reservoir-corrected CO2 content.


Solid Earth ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 2067-2085
Author(s):  
Vincent Famin ◽  
Hugues Raimbourg ◽  
Muriel Andreani ◽  
Anne-Marie Boullier

Abstract. Understanding diagenetic reactions in accreted sediments is critical for establishing the balance of fluid sources and sinks in accretionary prisms, which is in turn important for assessing the fluid pressure field and the ability for faults to host seismic slip. For this reason, we studied diagenetic reactions in deformation bands (shear zones and veins) within deep mud sediments from the Nankai accretionary prism (SW Japan) drilled at site C0001 during IODP Expedition 315, by means of microscopic observation, X-ray diffraction, and major- and trace-element analyses. Deformation bands are not only more compacted than the host sediment but are also enriched in framboidal pyrite, as observed under microscopy and confirmed by chalcophile-element enrichments (Fe, S, Cu, As, Sb, Pb). In tandem, one shear zone sample displays a destabilization of smectite or illite–smectite mixed layers and a slight crystallization of illite relative to its sediment matrix, and another sample shows correlated increases in B and Li in shear zones and veins compared to the host sediment, both effects suggesting a transformation of smectite into illite in deformation bands. The two diagenetic reactions of sulfide precipitation and smectite-to-illite transformation are explained by a combined action of sulfate-reducing and methanogen bacteria, which strongly suggests an increased activity of anaerobic microbial communities localized in deformation bands. This local bacterial proliferation was possibly enhanced by the liberation of hydrogen from strained phyllosilicates. We suggest that the proliferation of anoxic bacteria, boosted by deformation, may contribute to the pore water freshening observed at depth in accretionary prisms. Deformation-enhanced metabolic reactions may also explain the illitization observed in major faults of accretionary prisms. Care is therefore needed before interpreting illitization, and other diagenetic reactions as well, as evidence of shear heating, as these might be biogenic instead of thermogenic.


2021 ◽  
Vol 109 ◽  
pp. 103272
Author(s):  
Marcos Antonio Klunk ◽  
Sudipta Dasgupta ◽  
Mohuli Das ◽  
Rommulo Vieira Conceição ◽  
Soyane Juceli Siqueira Xavier ◽  
...  

2021 ◽  
Author(s):  
Enrique Gomez-Rivas ◽  
Juan Diego Martín-Martín ◽  
Paul Bons ◽  
Daniel Koehn ◽  
Albert Griera ◽  
...  

There is an ongoing debate on whether stylolites act as barriers or conduits for fluids, or even play no role in terms of fluid transport. This problem can be tackled by examining the spatial and temporal relationships between stylolites and other diagenetic products at multiple scales. Using the well-known Lower Cretaceous Benicàssim case study (Maestrat Basin, E Spain), we provide new field and petrographic observations of how bedding-parallel stylolites can influence different diagenetic processes during the geological evolution of a basin. The results reveal that stylolites can serve as baffles or inhibitors for different carbonate diagenetic reactions, and act as fronts for dolomitization, dolomite recrystallization and calcitization processes. Anastomosing stylolites, which pre-date burial dolomitization, likely acted as a collective baffle for dolomitization fluids in the study area, resulting in stratabound replacement geometries at the metre-to-kilometre scale. The dolomitization front weaves up and down following consecutive anastomosing stylolites, which are typical of mud-dominated facies that characterize limestone-dolostone transition zones. Contrarily, dolostone bodies tend to correspond to grain-dominated facies characterized by parallel (non-anastomosing) stylolites. The same stylolites subsequently acted as fluid flow conduits and barriers again when the burial and stress conditions changed. Stylolites within dolostones close to faults are found corroded and filled with saddle dolomite riming the stylolite pore, and high-temperature blocky calcite cements filling the remaining porosity. The fluids responsible for these reactions were likely released from below at high pressure, causing hydraulic brecciation, and were channelised through stylolites, which acted as fluid conduits. Stylolites are also found acting as baffles for subsequent calcitization reactions and occasionally appear filled with iron oxides released by calcitization. This example demonstrates how the same type of stylolites can act as barriers/inhibitors and/or conduits for different types of diagenetic reactions through time, and how important it is to consider their collective role when they form networks.


2021 ◽  
Author(s):  
Vincent Famin ◽  
Hugues Raimbourg ◽  
Muriel Andréani ◽  
Anne-Marie Boullier

Abstract. Understanding diagenetic reactions in accreted sediments is critical for establishing the balance of fluid sources and sinks in accretionary prisms, which is in turn important for assessing the fluid pressure field and the ability for faults to host seismic slip. For this reason, we studied diagenetic reactions in deformation bands (shear zones and veins) within deep mud sediments from the Nankai accretionary prism (SW Japan) drilled at site C0001 during IODP Expedition 315, by means of microscopic observation, X-ray diffraction, and major-trace element analyses. Deformation bands are not only more compacted than the host sediment, but are also enriched in framboidal pyrite, as observed under microscopy and confirmed by chalcophile element enrichments (Fe, S, Cu, As, Sb, Pb). In tandem, clays in deformation bands undergo a destabilization of smectite or illite/smectite mixed layers, and/or a slight crystallization of illite, which is matched by a correlated increase in B and Li compared to the host sediment. The two diagenetic reactions of sulfide precipitation and clay transformation are both explained by a combined action of sulfate-reducing and methanogen bacteria, which strongly suggests an increased activity of anaerobic microbial communities localized in deformation bands. This local bacterial proliferation was possibly enhanced by the liberation of hydrogen from strained phyllosilicates. We suggest that the proliferation of anoxic bacteria, boosted by deformation, may participate in the pore water freshening observed at depth in accretionary prisms. Deformation-enhanced metabolic reactions may also explain the illitization observed in major faults of accretionary prisms. Care is therefore needed before interpreting illitization, and other diagenetic reactions as well, as evidence of shear heating, as these might be biogenic instead of thermogenic.


2021 ◽  
Author(s):  
Cornelius Fischer

<p>Diagenetic reactions in sediments and sedimentary rocks are controlled by both fluid transport and surface reactivity. In this chapter, the major focus is on the effect of crystal surface reactivity and its variability. The “energetic landscape” of the solid material in contact with the fluid exerts control on reaction type, kinetics, and products. Critical surface processes include sorption, catalysis, dissolution, and precipitation. For diagenetic reactions, the sequence of processes and thus the potential inhibition of subsequent reactions due to surface modifications is of great interest. Consequently, the evolution of porosity and permeability is governed by the chronological sequence of surface reactions during the diagenetic history. This provides feedback to the fluid transport behaviour in the complex porous material. Because of this coupling, numerical approaches address the problem appropriately by the use of reactive transport codes. Pore scale treatment follows mechanisms at the scale of crystal surfaces that form the pore walls of the sedimentary rock. Such surface-chemical exercises require a parametrization that includes mechanistic understanding and connection to first-principles treatment. At larger scales, so-called continuum scale simulation treats fluid transport and fluid-solid reactions in a more generalized quantitative way. While such field-scale treatment is required and applied for multiple challenges, the small-scale mechanistic understanding is still a crucial part of geochemical research. The observed heterogeneity of surface reactivity requires specific upscaling strategies that are not yet reflected in large-scale analysis and predictions.</p>


2021 ◽  
Author(s):  
Desiree Baker ◽  
Sally Potter-McIntyre

<p>Three principal models exist for iron (oxyhydr)oxide concretion formation in the Navajo Sandstone in southern Utah, USA and the most recent model by Yoshida et al. (2018) suggests that calcite concretions are precursors to iron (oxyhydr)oxide concretions. This model could account for the existence of a gradient of carbonate and iron concretions found in both red diagenetic facies (with primary hematite grains coatings retained) and white diagenetic facies (primary hematite grain coatings removed during diagenesis). However, evidence for calcite precursor minerals and an understanding of the fluid chemistries involved in these diagenetic reactions is lacking. This research focuses on spheroidal concretions in the Navajo Sandstone at Coyote Gulch—a site that is down gradient, but upsection from Spencer Flat (the focus of previous work) and tests the hypothesis that calcite concretions are precursors to iron (oxyhydr)oxide concretions. Bulk mineralogy, bulk geochemistry, and petrography provide elemental and mineralogical composition of the concretions and show that the concretions are calcite cemented (~40 wt.%) and the host rock is predominately iron (oxyhydr)oxide cemented (~3 wt.%). The host rock surrounding embedded concretions shows secondary iron (oxyhydr)oxide precipitation and decreases in calcite in transects away from the concretion. These relationships suggest that the calcite concretions formed prior to the precipitation of secondary iron (oxyhydr)oxides and may have provided a localized buffering environment for the precipitation of iron (oxyhydr)oxides. This study also represents an opportunity to determine a universal model for carbonate and iron (oxyhydr)oxide spheroidal concretion formation, and to understand the influence of fluid interactions in the search for subsurface redox reactions to power metabolisms on Earth and Mars.</p>


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 483-487 ◽  
Author(s):  
Israa S. Abu-Mahfouz ◽  
Joe Cartwright ◽  
Erdem Idiz ◽  
John N. Hooker ◽  
Stuart A. Robinson

Abstract We present evidence that hydrocarbon source rocks can be preconditioned for primary hydrocarbon migration at an early stage of catagenesis by pore-scale processes linked to silica diagenesis. The evidence comes from a detailed petrographic and geochemical study of the Jordan Oil Shale (JOS), an immature to early mature, Upper Cretaceous to Paleogene source rock developed on the platform regions of central and southern Jordan. Diagenesis of biogenic silica led to silicification of the source rock interval and the growth of chert nodules. Localization of bitumen veins in reaction rims around these nodules is interpreted to indicate that silica diagenesis promotes the early mobilization of hydrocarbons from the geochemically identical, disseminated bitumen within the host mudstones. We propose a model in which early-formed bitumen migrated into neoforming mode I fractures that formed as a result of the crystallization pressure imposed from the growing chert nodule. Hydraulic fracturing occurred under elevated bitumen fluid pressures that approached lithostatic stress values under burial depths of the order of 1000 m. The recognition that silica diagenesis can promote the early migration of neoforming bitumen raises the possibility that primary hydrocarbon migration may occur earlier and at shallower depths than predicted by kinetic modeling approaches wherever silica diagenetic reactions are coeval with catagenesis.


2019 ◽  
Vol 108 (4) ◽  
pp. 1275-1292
Author(s):  
S. Sindern ◽  
V. Havenith ◽  
A. Gerdes ◽  
F. M. Meyer ◽  
D. Adelmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document