Investigation of Generalized SIFs of cracks in 3D piezoelectric media under various crack-face conditions

2020 ◽  
Vol 14 (2) ◽  
pp. 280-298 ◽  
Author(s):  
Jaroon Rungamornrat ◽  
Bounsana Chansavang ◽  
Weeraporn Phongtinnaboot ◽  
Chung Nguyen Van
2021 ◽  
Vol 13 (4) ◽  
pp. 177-195
Author(s):  
Sandeep Singh ◽  
Kuldeep Sharma

The objective of the work is to derive analytical solutions based on the Riemann–Hilbert (R–H) approach for semipermeable strip saturated two unequal collinear cracks in arbitrary polarized piezoelectric media. We particularly consider the influence of far field electromechanical loadings, poling direction and different crack-face boundary conditions. The problem is mathematically formulated into a set of non-homogeneous R–H problems in terms of complex potential functions (related to field components) using complex variable and extended Stroh formalism approach. After solving these equations, explicit solutions are obtained for the involved unknown complex potential functions and hence, the stress and electric displacement components at any point within the domain. Furthermore, after employing standard limiting conditions, explicit expressions for some conventional fracture parameters such as saturated zone lengths (in terms of nonlinear equations), local stress intensity factors and crack opening displacement are obtained. Numerical studies are presented for the PZT-4H material to analyze the effects of prescribed electromechanical loadings, inter-cracks distance, crack-face conditions and poling direction on the defined fracture parameters.


2008 ◽  
Vol 74 (12) ◽  
pp. 1848-1871 ◽  
Author(s):  
Xin-Sheng Xu ◽  
Andrew Y. T. Leung ◽  
Qian Gu ◽  
Hao Yang ◽  
Jian-Jun Zheng
Keyword(s):  

Author(s):  
Richard Olson ◽  
Paul Scott

The US NRC/EPRI xLPR (eXtremely Low Probability of Rupture) probabilistic pipe fracture analysis program uses deterministic modules as the foundation for the calculation of the probability of pipe leak or rupture as a consequence of active degradation mechanisms, vibration or seismic loading. The circumferential crack opening displacement module, CrCOD, estimates crack opening displacement (COD) at the inside pipe surface, at the mid-wall thickness location, and at the outside pipe surface using a combined tension/crack face pressure/bending GE/EPRI-like solution. Each module has an uncertainty beyond the uncertainty of the xLPR data inputs. This paper documents the uncertainty for CrCOD. Using 36 pipe fracture experiments, including: base metal, similar metal weld, and dissimilar metal weld experiments; bend only and pressure and bend loading; static and dynamic load histories; cracks that range from short to long, the uncertainty of the CrCOD methodology is characterized. Module uncertainty is presented in terms mean fit and standard deviation between prediction and experimental values.


2018 ◽  
Vol 24 (6) ◽  
pp. 1821-1848 ◽  
Author(s):  
Yuan Li ◽  
CuiYing Fan ◽  
Qing-Hua Qin ◽  
MingHao Zhao

An elliptical crack subjected to coupled phonon–phason loadings in a three-dimensional body of two-dimensional hexagonal quasicrystals is analytically investigated. Owing to the existence of the crack, the phonon and phason displacements are discontinuous along the crack face. The phonon and phason displacement discontinuities serve as the unknown variables in the generalized potential function method which are used to derive the boundary integral equations. These boundary integral equations governing Mode I, II, and III crack problems in two-dimensional hexagonal quasicrystals are expressed in integral differential form and hypersingular integral form, respectively. Closed-form exact solutions to the elliptical crack problems are first derived for two-dimensional hexagonal quasicrystals. The corresponding fracture parameters, including displacement discontinuities along the crack face and stress intensity factors, are presented considering all three crack cases of Modes I, II, and III. Analytical solutions for a penny-shaped crack, as a special case of the elliptical problem, are given. The obtained analytical solutions are graphically presented and numerically verified by the extended displacement discontinuities boundary element method.


Sign in / Sign up

Export Citation Format

Share Document