In vitro screening of rice genotypes for drought tolerance using polyethylene glycol

2011 ◽  
Vol 33 (6) ◽  
pp. 2209-2217 ◽  
Author(s):  
Rohit Joshi ◽  
Alok Shukla ◽  
Raj Kumar Sairam
2020 ◽  
Vol 10 (13) ◽  
pp. 4471
Author(s):  
Didar Rahim ◽  
Petr Kalousek ◽  
Nawroz Tahir ◽  
Tomáš Vyhnánek ◽  
Petr Tarkowski ◽  
...  

Rice (Oryza sativa L.) is productively affected by different environmental factors, including biotic and abiotic stress. The objectives of this research were to evaluate the genetic distinction among Kurdish rice genotypes using the simple sequence repeats (SSRs) molecular markers and to perform in vitro tests to characterize the drought tolerance of six local rice genotypes. The polymorphic information content (PIC) varied from 0.38 to 0.84 with an average of 0.56. The genetic distance ranged from 0.33 to 0.88. Drought stress had a significant impact (p ≤ 0.05) on callus growth parameters. Enzymatic antioxidant systems were predicted and exhibited a significant variation. The findings revealed that proline levels increase in proportion to polyethylene glycol (PEG) concentrations. Kalar and Gwll Swr genotypes showed the worst performances in phenotypic and biochemical traits, while Choman and Shawre exhibited the best phenotypic and biochemical performances. A positive and substantial relationship between callus fresh weight (CFW) and callus dry weight (CDW) was found under stressful and optimized conditions. Callus induction (CI) was positively and significantly associated with the catalase activity (CAT) in all stressed treatments. Based on the results for callus growth and the biochemical parameters under stress conditions, a remarkable genotype distinction, based on the tolerance reaction, was noted as follows: PEG resistant > susceptible, Choman > Shawre > White Bazyan > Red Bazyan > Gwll Swr > Kalar. The CI and CAT characteristics were considered as reliable predictors of drought tolerance in rice genotypes.


2016 ◽  
Vol 17 (3) ◽  
pp. 568
Author(s):  
Rukundo Placide ◽  
Hussein Shimelis ◽  
Mark Laing ◽  
Gahakwa Daphrose

2016 ◽  
Vol 8 (4) ◽  
pp. 511-519 ◽  
Author(s):  
Mihaela A. CIOLOCA ◽  
Andreea M. TICAN ◽  
Maria IANOŞI ◽  
Carmen L. BĂDĂRĂU

The current paper aimed to study the in vitro response of potato genotypes to water stress induced by adding sorbitol and polyethylene glycol in the culture medium. The biological material analysed in the experiment was represented by a Romanian line ‘LP 11-1525/1’ and two isogenic lines ‘LI 101’ and ‘LI 102’. For cultures initiation, the line ‘LP 11-1525/1’ was started from meristems and for the other two genotypes true potato seeds were used. The studied potato genotypes behaved differently depending on the analysed parameters and on the treatment applied for drought tolerance. It was noted that the line ‘LP 11-1525/1’ achieved good results for most of the growth parameters studied, and also the lines derived from true potato seeds behaved well, in some cases even exceeding the line derived from meristems. Of the lines derived from true potato seeds, the best performance was noted for line ‘LI 101-6’ in all the analysed parameters, both on sorbitol and PEG medium. In addition, lines ‘LI 101-7’ and ‘LI 102-4’ achieved good results on both variants of medium used to mediate water stress. Therefore, establishing drought tolerance individuals within populations derived from true potato seeds using sorbitol and polyethylene glycol might be applied.


2002 ◽  
Vol 38 (5) ◽  
pp. 525-530 ◽  
Author(s):  
Joyeeta Biswas ◽  
Bikash Chowdhury ◽  
A. Bhattacharya ◽  
A. B. Mandal

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 10
Author(s):  
Widi Sunaryo ◽  
Darnaningsih Darnaningsih ◽  
Nurhasanah Nurhasanah

Background: Water shortage due to natural and/or technical drought stress, widespread throughout Sumatra, Java, Sulawesi and Kalimantan islands, significantly reduces crop production. The development of varieties tolerant to drought stress is important since it is more effective rather than improving irrigation infrastructure to increase the sweet potato productivity. Methods: Selection and regeneration experiments assessing purple sweet potato callus tolerance of drought stress, simulated by polyethylene glycol (PEG), were conducted to generate new variant plants tolerant of drought stress. Sterile explants (leaf and petiole) generated from previous in vitro culture were inoculated to the Murishage and Skoog (MS) medium containing plant growth regulator combination as treatments to induce calli. The calli were then transferred to half-MS medium containing 0, 5, 10, 15 and 20% PEG as selection agent for drought tolerance. The surviving calli were regenerated in the MS medium containing 0, 0.5, 1 or 1.5 mg l-1 6-benzylaminopurine (BAP). The callus formation, growth and survivability during in vitro culture were measured. Results: Calli were successfully formed in almost all media containing 2,4-Dichlorophenoxyacetic acid (2,4-D ) with the concentration of 1, 2, 3 and 4 mg l-1 and BAP (concentration: 0.5 and 1 mg l-1), but the medium of MS + 2 mg l-1 2,4-D + 0.5 mg l-1 BAP resulted in the highest number of induced calli per treatment (mean=11.36), with the percentage of responsive explants standing at around 96%. The higher the concentration of PEG, the lower the number of surviving calli. At 20% PEG, only 54.42% calli survived. There were five plants successfully regenerated from the survived calli at 20% PEG, using MS medium containing 1.5 mg l-1 BAP. Conclusions: The experiment has successfully produced putative drought-tolerant plants by callus screening using PEG as drought-tolerance-selecting agent in purple sweet potato.


2017 ◽  
Vol 15 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Nadia Sandra Kacem ◽  
Fabienne Delporte ◽  
Yordan Muhovski ◽  
Abdelhamid Djekoun ◽  
Bernard Watillon

Sign in / Sign up

Export Citation Format

Share Document