Effects of drought stress on the antioxidant system, osmolytes and secondary metabolites of Saposhnikovia divaricata seedlings

2018 ◽  
Vol 40 (11) ◽  
Author(s):  
Yuqian Men ◽  
Dehui Wang ◽  
Bingzhen Li ◽  
Youla Su ◽  
Guilin Chen
2020 ◽  
Vol 259 ◽  
pp. 108795 ◽  
Author(s):  
Shanshan Gao ◽  
Yanlin Wang ◽  
Shuai Yu ◽  
Yanqing Huang ◽  
Huanchu Liu ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 579 ◽  
Author(s):  
Naheeda Begum ◽  
Muhammad Abass Ahanger ◽  
Yunyun Su ◽  
Yafang Lei ◽  
Nabil Sabet A. Mustafa ◽  
...  

The role of arbuscular mycorrhizal fungus (AMF, Glomus versiforme) in amelioration of drought-induced effects on growth and physio-biochemical attributes in maize (Zea mays L.) was studied. Maize plants were exposed to two drought regimes, i.e., moderate drought (MD) and severe drought (SD), with and without AMF inoculation. Drought at both levels reduced plant height, and chlorophyll and carotenoid content, thereby impeding photosynthesis. In addition, drought stress enhanced the generation of toxic reactive oxygen species (ROS), including H2O2, resulting in membrane damage reflected as increased electrolyte leakage and lipid peroxidation. Such negative effects were much more apparent under SD conditions that those of MD and the control, however, AMF inoculation significantly ameliorated the deleterious effects of drought-induced oxidative damage. Under control conditions, inoculation of AMF increased growth and photosynthesis by significantly improving chlorophyll content, mineral uptake and assimilation. AMF inoculation increased the content of compatible solutes, such as proline, sugars and free amino acids, assisting in maintaining the relative water content. Up-regulation of the antioxidant system was obvious in AMF-inoculated plants, thereby mediating quick alleviation of oxidative effects of drought through elimination of ROS. In addition, AMF mediated up-regulation of the antioxidant system contributed to maintenance of redox homeostasis, leading to protection of major metabolic pathways, including photosynthesis, as observed in the present study. Total phenols increased due to AMF inoculation under both MD and SD conditions. The present study advocates the beneficial role of G. versiforme inoculation in maize against drought stress.


2016 ◽  
Vol 36 (14) ◽  
Author(s):  
梁建萍 LIANG Jianping ◽  
贾小云 JIA Xiaoyun ◽  
刘亚令 LIU Yaling ◽  
吴云 WU Yun ◽  
周然 ZHOU Ran ◽  
...  

2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Juan Liang ◽  
Miaohua Quan ◽  
Chaowen She ◽  
Anna He ◽  
Xiaoliang Xiang ◽  
...  

2013 ◽  
Vol 38 (10) ◽  
pp. 1884-1890 ◽  
Author(s):  
Ren-He ZHANG ◽  
Dong-Wei GUO ◽  
Xing-Hua ZHANG ◽  
Hai-Dong LU ◽  
Jian-Chao LIU ◽  
...  

2015 ◽  
Vol 41 (1) ◽  
pp. 154 ◽  
Author(s):  
Xing-Hua ZHANG ◽  
Jie GAO ◽  
Wei-Li DU ◽  
Ren-He ZHANG ◽  
Ji-Quan XUE

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


Author(s):  
Riyazuddin Riyazuddin ◽  
Nisha Nisha ◽  
Kalpita Singh ◽  
Radhika Verma ◽  
Ravi Gupta

Sign in / Sign up

Export Citation Format

Share Document