Contributions of radiation interception and radiation-use efficiency to biomass decrease due to potassium starvation depend on potassium deficiency intensities

2019 ◽  
Vol 41 (4) ◽  
Author(s):  
Yonghui Pan ◽  
Zhifeng Lu ◽  
Xiaokun Li ◽  
Rihuan Cong ◽  
Tao Ren ◽  
...  
Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 101-110 ◽  
Author(s):  
S. Sridhara ◽  
T.G. Prasad

SUMMARYA field experiment was conducted at Gandhi Krishi Vignana Kendra, University of Agricultural Sciences, Bangalore to study the effect of irrigation regimens on the biomass accumulation, canopy development, light interception and radiation use efficiency of sunflower. The treatments includes irrigating the plants at 0.4, 0.6, 0.8 and 1.0 cumulative pan evaporation. The results indicated that the aboveground biomass, canopy development, radiation interception and radiation use efficiency were influenced favorably by the irrigation regimens. Irrespective of the irrigation regimen, the radiation use efficiency of sunflower increased from 15 DAS to 75 DAS and then tended to decline. The decrease in RUE after anthesis is coupled with decrease in leaf nitrogen content. In general the RUE of sunflower ranged from 0.49 g MJ-1 to 1.84 g MJ-1 at different growth stages. The light transmission within the canopy increased exponentially with plant height and the canopy extension coefficient is found to be 0.8.


1993 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. M. Bennett ◽  
T. R. Sinclair ◽  
Li Ma ◽  
K. J. Boote

Abstract Knowledge of the interception of solar radiation by crop canopies and the use of that radiation for carbon assimilation is essential for understanding crop growth and yield as a function of the environment. A field experiment was conducted in 1990 at Gainesville, FL to determine if differences in single leaf carbon exchange rate (CER), canopy radiation interception, radiation use efficiency (g dry matter produced per unit of solar radiation intercepted), and increase in seed harvest index with time exist among several commonly grown peanut (Arachis hypogaea L.) cultivars. Four cultivars (Early Bunch, Florunner, Marc I, and Southern Runner) were grown in field plots on a Kendrick fine sand (a loamy, siliceous, hyperthermic Arenic Paleudult) under fully irrigated, intensive management. Total crop and seed dry matter accumulation were determined, and canopy radiation interception measured at weekly intervals. CER of uppermost, fully expanded sunlit leaves were determined at midday at 2-wk intervals. Single leaf CER's were similar among cultivars (25 to 35 μmol CO2 m-2 s-1) and relatively stable throughout most of the season, before declining during late seed filling. Although interception of radiation differed somewhat among cultivars during early canopy development, total crop dry matter accumulation was linearly related to the cumulative amount of radiation intercepted by all four cultivars (r2=≥0.99). Radiation use efficiency was similar among all cultivars with a mean of 1.00 g dry matter accumulated per MJ of intercepted solar radiation. The increase in seed harvest index with time was linear (r2≤0.94) and the rates of increase were similar among the Early Bunch, Florunner, and Marc I cultivars (0.0058 d-1), but lower (0.0043 d-1) for the later maturing Southern Runner cultivar. Results from this study indicated that the primary differences among these four cultivars were in early-season development of the leaf canopy and resultant radiation interception and the rate of seed growth, rather than the capacity to assimilate carbon dioxide.


2011 ◽  
Vol 62 (10) ◽  
pp. 840 ◽  
Author(s):  
E. Chakwizira ◽  
D. J. Moot ◽  
W. R. Scott ◽  
A. L. Fletcher ◽  
S. Maley

Inadequate phosphorus (P) supply at crop establishment can reduce dry matter (DM) accumulation. A field experiment quantified the effects of banded or broadcast P fertiliser (0, 20, 40 or 60 kg P/ha) applied at establishment to moderately fertile soils on growth and development of ‘Regal’ kale (Brassica oleracea var. acephala L.) crops. DM yield increased from 8710 to ~11 400 kg/ha by the addition of P fertiliser but was unaffected by the method of P application. The control crops accumulated 630 kg DM/100 degree-day (degree-day-accumulated heat available for crop growth) compared with ~800 kg/100 degree-day for the P-fertilised crops. The yield response to P was caused by an increased rate of development of leaf area index (LAI) and consequently earlier canopy closure that led to higher accumulated radiation interception (RIcum). The maximum LAI for the control crops was 3.80 or 24% lower than for fertilised crops. At the final harvest total RIcum for P-fertilised crops was 22% higher than the 592 MJ/m2 for the control, and this accounted for 80% of their yield differences. Leaf appearance rates were unaffected by P supply, with a common phyllochron of 109 degree-day. There was a consistent relationship between light interception and LAI, with a critical LAI of 3.40, extinction coefficient of 0.90 and radiation-use efficiency of 1.56 g/MJ photosynthetically active radiation. Overall, these results support a starter P application of at least 20 kg P/ha at establishment to maximise yields for kale crops when initial soil Olsen P levels ranged from 9 to 17 mg/kg soil.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Yonghui Pan ◽  
Shuai Gao ◽  
Kailiu Xie ◽  
Zhifeng Lu ◽  
Xusheng Meng ◽  
...  

To reveal the physiological mechanism underlying the yield advantage of super hybrid rice compared with inbred super rice, a super hybrid rice cultivar Yliangyou 3218 (YLY) and an inbred super rice cultivar Zhendao 11 (ZD) were field grown under five nitrogen (N) fertilizer rates in 2016 and 2017. The average grain yield of YLY across nitrogen fertilizer rates was 10.1 t ha−1 in 2016 and 9.7 t ha−1 in 2017, 29.6% and 21.3% higher than that of ZD in 2016 and 2017, respectively. YLY showed higher above-ground biomass accumulation, especially growth before heading, which was mainly due to its faster green leaf area index (GLAI) formation and greater maximum GLAI (GLAImax). The daily radiation interception (RIdaily) was 15.0% higher in YLY than ZD, but the accumulated radiation interception (RIacc) before heading showed little difference between them because ZD had a longer growth duration. The radiation use efficiency (RUE) of YLY before heading was 54.7% higher than that of ZD (YLY, 2.12 g MJ−1; ZD, 1.37 g MJ−1). Our result demonstrated that the yield advantage of YLY was due to its higher above-ground biomass before heading, which was mainly achieved by its improvement in RUE rather than radiation interception.


Author(s):  
M. A. Awal ◽  
M. O. Gani

Aim: Solar radiation is the unique source of energy which drives the photosynthesis of green plants for producing biomass to living being. Use efficiency of solar radiation to produce biomass has been quantified for many crops in field condition but no study is undertaken for mustard although it is an important oil seed crop in the world as well as in Bangladesh. Therefore, the present study was undertaken to evaluate the radiation-use efficiency of mustard crop. Study Design: The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates. Place and Duration of Study: The experiment was conducted in the Crop Botany Field Laboratory, Bangladesh Agricultural University, Mymensingh during the winter season extended from November 2011 to March 2012. Methodology: Treatments comprised six mustard varieties viz. BINAsarisha-3, BINAsarisha-4, BINAsarisha-5, BINAsarisha-6, BINAsarisha-7 and BINAsarisha-8 which were grown following standard cultivation techniques to optimize the growth and development. Radiation measurements along the growing season were carried out during solar noon on some sunny days with a Radiometer connected to a 1 m long Line Quantum Sensor. Results: Mustard varieties showed wide variation in terms of plant height, branch number, leaf area index (LAI), dry matter (DM) accumulation, yield components and yield and radiation interception and use. BINAsarisha-6 showed better performance on the aforesaid traits followed by BINAsarisha-7 while lower performance was observed in BINAsarisha-3 and BINAsarisha-4. The higher seed yield (2.41 t ha-1) was obtained in the BINAsarisha-6, the variety also showed higher radiation-use efficiency, RUE (3.75 g MJ-1 PAR) whereas the lower seed yield (about 2.1 t ha-1) was observed in the BINAsarisha-3 or BINAsarisha-4, the varieties also showed the lower RUE (<3 g MJ-1 PAR) which indicate that the higher accumulation of DM in BINAsarisha-6 variety as influenced by higher utilization of solar radiation effectively constitute the seed yield. The temporal RUE showed much fluctuated pattern in all the varieties and higher RUEs were observed at the later part of the crop growth. The variety BINAsarisha-6 also showed the higher seasonal mean RUE whereas BINAsarisha-4 showed the lower. Conclusion: Mustard varieties showed wide variation in growth, yield and radiation interception and use. Higher biomass production as well as higher seed yield is associated with higher utilization of solar radiation.


Sign in / Sign up

Export Citation Format

Share Document