scholarly journals Higher Radiation Use Efficiency Produces Greater Biomass Before Heading and Grain Yield in Super Hybrid Rice

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Yonghui Pan ◽  
Shuai Gao ◽  
Kailiu Xie ◽  
Zhifeng Lu ◽  
Xusheng Meng ◽  
...  

To reveal the physiological mechanism underlying the yield advantage of super hybrid rice compared with inbred super rice, a super hybrid rice cultivar Yliangyou 3218 (YLY) and an inbred super rice cultivar Zhendao 11 (ZD) were field grown under five nitrogen (N) fertilizer rates in 2016 and 2017. The average grain yield of YLY across nitrogen fertilizer rates was 10.1 t ha−1 in 2016 and 9.7 t ha−1 in 2017, 29.6% and 21.3% higher than that of ZD in 2016 and 2017, respectively. YLY showed higher above-ground biomass accumulation, especially growth before heading, which was mainly due to its faster green leaf area index (GLAI) formation and greater maximum GLAI (GLAImax). The daily radiation interception (RIdaily) was 15.0% higher in YLY than ZD, but the accumulated radiation interception (RIacc) before heading showed little difference between them because ZD had a longer growth duration. The radiation use efficiency (RUE) of YLY before heading was 54.7% higher than that of ZD (YLY, 2.12 g MJ−1; ZD, 1.37 g MJ−1). Our result demonstrated that the yield advantage of YLY was due to its higher above-ground biomass before heading, which was mainly achieved by its improvement in RUE rather than radiation interception.

2011 ◽  
Vol 36 (5) ◽  
pp. 489-494 ◽  
Author(s):  
Di-qin LI ◽  
Qi-yuan TANG ◽  
Yu-guang ZHAI ◽  
Jian-quan QIN ◽  
Yun-bo ZHANG ◽  
...  

2009 ◽  
Vol 114 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Yunbo Zhang ◽  
Qiyuan Tang ◽  
Yingbin Zou ◽  
Diqin Li ◽  
Jianquan Qin ◽  
...  

2016 ◽  
Vol 193 ◽  
pp. 87-93 ◽  
Author(s):  
Min Huang ◽  
Shuanglü Shan ◽  
Xuefeng Zhou ◽  
Jiana Chen ◽  
Fangbo Cao ◽  
...  

2019 ◽  
Vol 111 (4) ◽  
pp. 1788-1798 ◽  
Author(s):  
Ke Liu ◽  
Rui Yang ◽  
Jian Lu ◽  
Xiaoyan Wang ◽  
Bilin Lu ◽  
...  

Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 101-110 ◽  
Author(s):  
S. Sridhara ◽  
T.G. Prasad

SUMMARYA field experiment was conducted at Gandhi Krishi Vignana Kendra, University of Agricultural Sciences, Bangalore to study the effect of irrigation regimens on the biomass accumulation, canopy development, light interception and radiation use efficiency of sunflower. The treatments includes irrigating the plants at 0.4, 0.6, 0.8 and 1.0 cumulative pan evaporation. The results indicated that the aboveground biomass, canopy development, radiation interception and radiation use efficiency were influenced favorably by the irrigation regimens. Irrespective of the irrigation regimen, the radiation use efficiency of sunflower increased from 15 DAS to 75 DAS and then tended to decline. The decrease in RUE after anthesis is coupled with decrease in leaf nitrogen content. In general the RUE of sunflower ranged from 0.49 g MJ-1 to 1.84 g MJ-1 at different growth stages. The light transmission within the canopy increased exponentially with plant height and the canopy extension coefficient is found to be 0.8.


2016 ◽  
Vol 53 (2) ◽  
pp. 210-225 ◽  
Author(s):  
GUILHERME M. TORRES ◽  
ADRIAN KOLLER ◽  
RANDY TAYLOR ◽  
WILLIAM R. RAUN

SUMMARYSeed-oriented planting provides a manner to influence canopy structure. The purpose of this research was to improve maize light interception using seed-oriented planting to manipulate leaf azimuth across the row thereby minimizing leaf overlap. To achieve leaf azimuths oriented preferentially across the row, seeds were planted: (i) upright with caryopsis pointed down, parallel to the row (upright); and (ii) laying flat, embryo up, perpendicular to the row (flat). These treatments were compared to conventionally planted seeds with resulting random leaf azimuth distribution. Seed orientation effects were contrasted with three levels of plant population and two levels of hybrid specific canopy structures. Increased plant population resulted in greater light interception but yield tended to decrease as plant population increased. The planophile hybrid produced consistently greater yields than the erectophile hybrid. The difference between planophile and erectophile hybrids ranged from 283 to 903 kg ha−1. Overall, mean grain yield for upright and flat seed placement increased by 351 and 463 kg ha−1 compared to random seed placement. Greater cumulative intercepted photosynthetically active radiation (CIPAR) was found for oriented seeds rather than random-oriented seeds. At physiological maturity upright, flat and random-oriented seeds intercepted 555, 525 and 521 MJ m−2 of PAR, respectively. Maize yield responded positively to improved light interception and better radiation use efficiency. Under irrigated conditions, precision planting of maize increased yield by 9 to 14% compared to random-oriented seeds.


1993 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. M. Bennett ◽  
T. R. Sinclair ◽  
Li Ma ◽  
K. J. Boote

Abstract Knowledge of the interception of solar radiation by crop canopies and the use of that radiation for carbon assimilation is essential for understanding crop growth and yield as a function of the environment. A field experiment was conducted in 1990 at Gainesville, FL to determine if differences in single leaf carbon exchange rate (CER), canopy radiation interception, radiation use efficiency (g dry matter produced per unit of solar radiation intercepted), and increase in seed harvest index with time exist among several commonly grown peanut (Arachis hypogaea L.) cultivars. Four cultivars (Early Bunch, Florunner, Marc I, and Southern Runner) were grown in field plots on a Kendrick fine sand (a loamy, siliceous, hyperthermic Arenic Paleudult) under fully irrigated, intensive management. Total crop and seed dry matter accumulation were determined, and canopy radiation interception measured at weekly intervals. CER of uppermost, fully expanded sunlit leaves were determined at midday at 2-wk intervals. Single leaf CER's were similar among cultivars (25 to 35 μmol CO2 m-2 s-1) and relatively stable throughout most of the season, before declining during late seed filling. Although interception of radiation differed somewhat among cultivars during early canopy development, total crop dry matter accumulation was linearly related to the cumulative amount of radiation intercepted by all four cultivars (r2=≥0.99). Radiation use efficiency was similar among all cultivars with a mean of 1.00 g dry matter accumulated per MJ of intercepted solar radiation. The increase in seed harvest index with time was linear (r2≤0.94) and the rates of increase were similar among the Early Bunch, Florunner, and Marc I cultivars (0.0058 d-1), but lower (0.0043 d-1) for the later maturing Southern Runner cultivar. Results from this study indicated that the primary differences among these four cultivars were in early-season development of the leaf canopy and resultant radiation interception and the rate of seed growth, rather than the capacity to assimilate carbon dioxide.


2009 ◽  
Vol 121 (4) ◽  
pp. 404-409 ◽  
Author(s):  
M.I. Vieira ◽  
J.P. de Melo-Abreu ◽  
M.E. Ferreira ◽  
A.A. Monteiro

Sign in / Sign up

Export Citation Format

Share Document