How to Attain Ultralow Interfacial Tension and Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: a Review—Part 3. Practical Procedures to Optimize the Laboratory Research According to the Current State of the Art in Surfactant Mixing

2016 ◽  
Vol 20 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Jean-Louis Salager ◽  
Ana M. Forgiarini ◽  
Miguel J. Rondón
Langmuir ◽  
2005 ◽  
Vol 21 (9) ◽  
pp. 3749-3756 ◽  
Author(s):  
Milton J. Rosen ◽  
Hongzhuang Wang ◽  
Pingping Shen ◽  
Youyi Zhu

Author(s):  
Pattamas Rattanaudom ◽  
Bor-Jier-Ben Shiau ◽  
Jeffrey Harwell ◽  
Uthaiporn Suriyapraphadilok ◽  
Ampira Charoensaeng

2019 ◽  
Vol 33 (5) ◽  
pp. 4158-4168 ◽  
Author(s):  
Stefanía Betancur ◽  
Francisco Carrasco-Marín ◽  
Agustín F. Pérez-Cadenas ◽  
Camilo A. Franco ◽  
Jaime Jiménez ◽  
...  

1981 ◽  
Vol 21 (05) ◽  
pp. 581-592 ◽  
Author(s):  
Creed E. Blevins ◽  
G. Paul Willhite ◽  
Michael J. Michnick

Abstract The three-phase region of the Witco TRS 10-80 sulfonate/nonane/isopropanol (IPA)/2.7% brine system was investigated in detail. A method is described to locate phase boundaries on pseudoternary diagrams, which are slices of the tetrahedron used to display phase boundaries of the four-component system.The three-phase region is wedge-like in shape extending from near the hydrocarbon apex to a point near 20% alcohol on the brine/alcohol edge of the tetrahedron. It was found to be triangular in cross section on pseudoternary diagrams of constant brine content, with its base toward the nonane/brine/IPA face. The apex of the three-phase region is a curved line where the M, H + M, and M + W regions meet. On this line, the microemulsion (M*) is saturated with hydrocarbon, brine, and alcohol for a particular sulfonate content. A H + M region exists above the three-phase region, and an M + W region exists below it.Relationships were found between the alcohol concentration of the middle phase and the sulfonate/alcohol and sulfonate/hydrocarbon ratios in the middle phase. These correlations define the curve that represents the locus of saturated microemulsions in the quaternary phase diagram. Alcohol contents of excess oil and brine phases also were correlated with alcohol in the middle phase.Pseudoternary diagrams for sulfonates are presented to provide insight into the evolution of the three-phase region with salinity. Surfactants include Mahogany AA, Phillips 51918, Suntech V, and Stepan Petrostep(TM) 500. Differences between phase diagrams follow trends inferred from comparisons of equivalent weights, mono-/disulfonate content, optimal salinity, and EPACNUS values. Introduction The displacement of oil from a porous rock by microemulsions is a complex process. As the microemulsion flows through the rock, it mixes with and/or solubilizes oil and water. The composition of the microemulsion is altered by adsorption of sulfonate, leading to expulsion of water and/or oil. Multiphase regions are encountered where phases may flow at different velocities depending on the fluid/rock interactions. Knowledge of phase behavior of microemulsion systems is required to understand the displacement mechanisms, to model process performance, and to select suitable compositions for injection.Microemulsions used in oil recovery processes consist of five components: oil, water, salt, surfactant (usually a petroleum sulfonate and a cosurfactant (usually an alcohol). Brine frequently is considered to be a pseudocomponent. When this assumption is valid, a microemulsion may be studied as a four-component system.Windsor developed a qualitative explanation and classification scheme for microemulsion phase behavior. Healy and Reed showed that Windsor's concepts were applicable to microemulsions used in oil recovery processes. Healy et al. introduced the concept of optimal salinity to define a particular characteristic of surfactant system. The optimal salinity for phase behavior was defined as the salinity where the middle phase of a three-phase system has equal solubility of oil and brine. They also found that optimal salinity determined in this manner was close to the salinity where the interfacial tension between the upper and middle phases was equal to the interfacial tension between the middle and lower phases.Salager et al. developed a correlation of optimal salinity data for a particular surfactant. SPEJ P. 581^


2019 ◽  
Vol 2 (2) ◽  
pp. 27-28
Author(s):  
Yosamin Esanullah ◽  
Japan Trivedi ◽  
Benedicta Nwani ◽  
Madison Barth

The increase in energy demand has led to extensive research and development on economically, environmentally and technically feasible ways of improving the ever-growing energy demand. A common derivative of energy is from hydrocarbons, specifically oil. The process of oil recovery can be divided into primary, secondary, and tertiary recovery (also known as enhanced oil recovery). Once the internal pressure of a reservoir has depleted enough during primary and secondary recovery, more advanced techniques in enhanced oil recovery mechanisms are used to recover 50-80% of oil in the reservoir. Tertiary recovery includes the use of surfactants to reduce interfacial tension (IFT) or alter wettability. In this work, a zwitter ionic surfactant at two different concentrations is evaluated for its ability to reduce the interfacial tension between oil and water, as well as altering wettability in silurian dolomite. To achieve this, fluid-fluid analysis was done by a compatibility test, phase behavior test and interfacial tension measurements. Rock-fluid analysis was also completed by means of floatation test, carried out with carbonate rock particles to analyze the surfactant’s ability to alter wettability. Solution pH measurements were taken to validate the qualitative floatation test results. Results show that the surfactant, chembetaine C surfactant, is compatible with all ranges of salinities investigated, though was not able to produce a winsor type III micro-emulsion. The results of the interfacial tension measurements are in line with the phase behavior test, as none of the measurements were at ultra-low values. Surfactant retention is likely to occur with the analyzed zwitterionic surfactant based on the fluid-fluid analysis. Qualitative results from the floatation test show that the wettability of the carbonate rock particles cannot be significantly altered to more water-wet conditions. The pH of the solution remains at alkaline values, which can be beneficial in enhanced oil recovery in producing soap in situ, also known as saponification. Overall, tests conclude that this zwitterionic surfactant at 1% concentration would be most effective at 10,000 ppm salinity brine, though overall is not suitable for chemically enhanced oil recovery.


2021 ◽  
Vol 53 (2) ◽  
pp. 210210
Author(s):  
Muhammad Mufti Azis ◽  
Fergie Febrina ◽  
Ignesti Anindia ◽  
Galuh Almas Darmawati ◽  
Desi Amalia Fenyka ◽  
...  

Indonesia aims to implement large-scale enhanced oil recovery (EOR) to increase the national oil production. Chemical EOR is a promising technology to boost the production of old reservoirs with the aid of surfactants and polymers. Thus, the production of low-cost EOR surfactants from local resources with acceptable performance is highly attractive. The objective of the present work was to demonstrate the development of low-cost lignosulfonate surfactant production from kraft black liquor (BL). First, lignin was isolated from black liquor using a novel CO2 bubbling technique, followed by addition of coagulants. Next, sodium lignosulfonate (SLS) was synthesized from the resulting lignin, followed by formulation of SLS with octanol and palm fatty acid distillate (PFAD) soap to obtain an ultralow interfacial tension (IFT) surfactant. The initial IFT value of the SLS solution was already high at 0.7 mN/m. After formulation, the composition SLS:PFAD soap:octanol = 70:22:8 (wt%) improved the IFT value to 3.1 10-3 mN/m. An ultralow IFT in the range of 10-3 mN/m as achieved here fulfills the required IFT value for EOR surfactant.


2019 ◽  
Vol 797 ◽  
pp. 402-410 ◽  
Author(s):  
Sarveen Mahendran ◽  
Parthiban Siwayanan ◽  
Nur Anisah Shafie ◽  
Surej Kumar Subbiah ◽  
Babar Azeem

As the petroleum industry is facing challenges to add more oil reserves in their book, greater emphasis has been placed on improving the ultimate recovery factor for oilfields. When the recovery from primary and secondary methods could not be improved further, enhanced oil recovery (EOR) generally will be sought as the last option. One of the techniques applied in EOR is known as surfactant flooding. Though surfactants are very effective for the incremental oil recovery, there are implications during the post-flooding process. EOR surfactants that derived from petrochemicals generally display negative effects towards the marine ecosystem. This initial study aims to evaluate the potential application of palm oil based methyl ester sulfonate (MES) as a possible candidate for EOR application. Three qualitative and quantitative tests were performed on MES to evaluate its properties and capabilities for application in a specific offshore field. The results obtained from the qualitative compatibility and stability tests show that this anionic surfactant has great stability and compatibility with the brine solution as there are no visible signs of precipitation formation. However, the qualitative phase behavior test results indicated that the surfactant solution although has the ability to react with the crude oil but not at the required micro-emulsion state. In addition, the quantitative interfacial tension (IFT) test results also verified and supported the phase behavior test results where the strength of the MES was not adequate as a single surfactant system to achieve the ultra-low IFT state.


Sign in / Sign up

Export Citation Format

Share Document