scholarly journals Optimal Zwitterionic Surfactant Slug for an Improved Oil Recovery in Oil Wet Carbonate Rocks - Silurian Dolomite

2019 ◽  
Vol 2 (2) ◽  
pp. 27-28
Author(s):  
Yosamin Esanullah ◽  
Japan Trivedi ◽  
Benedicta Nwani ◽  
Madison Barth

The increase in energy demand has led to extensive research and development on economically, environmentally and technically feasible ways of improving the ever-growing energy demand. A common derivative of energy is from hydrocarbons, specifically oil. The process of oil recovery can be divided into primary, secondary, and tertiary recovery (also known as enhanced oil recovery). Once the internal pressure of a reservoir has depleted enough during primary and secondary recovery, more advanced techniques in enhanced oil recovery mechanisms are used to recover 50-80% of oil in the reservoir. Tertiary recovery includes the use of surfactants to reduce interfacial tension (IFT) or alter wettability. In this work, a zwitter ionic surfactant at two different concentrations is evaluated for its ability to reduce the interfacial tension between oil and water, as well as altering wettability in silurian dolomite. To achieve this, fluid-fluid analysis was done by a compatibility test, phase behavior test and interfacial tension measurements. Rock-fluid analysis was also completed by means of floatation test, carried out with carbonate rock particles to analyze the surfactant’s ability to alter wettability. Solution pH measurements were taken to validate the qualitative floatation test results. Results show that the surfactant, chembetaine C surfactant, is compatible with all ranges of salinities investigated, though was not able to produce a winsor type III micro-emulsion. The results of the interfacial tension measurements are in line with the phase behavior test, as none of the measurements were at ultra-low values. Surfactant retention is likely to occur with the analyzed zwitterionic surfactant based on the fluid-fluid analysis. Qualitative results from the floatation test show that the wettability of the carbonate rock particles cannot be significantly altered to more water-wet conditions. The pH of the solution remains at alkaline values, which can be beneficial in enhanced oil recovery in producing soap in situ, also known as saponification. Overall, tests conclude that this zwitterionic surfactant at 1% concentration would be most effective at 10,000 ppm salinity brine, though overall is not suitable for chemically enhanced oil recovery.


2019 ◽  
Vol 797 ◽  
pp. 402-410 ◽  
Author(s):  
Sarveen Mahendran ◽  
Parthiban Siwayanan ◽  
Nur Anisah Shafie ◽  
Surej Kumar Subbiah ◽  
Babar Azeem

As the petroleum industry is facing challenges to add more oil reserves in their book, greater emphasis has been placed on improving the ultimate recovery factor for oilfields. When the recovery from primary and secondary methods could not be improved further, enhanced oil recovery (EOR) generally will be sought as the last option. One of the techniques applied in EOR is known as surfactant flooding. Though surfactants are very effective for the incremental oil recovery, there are implications during the post-flooding process. EOR surfactants that derived from petrochemicals generally display negative effects towards the marine ecosystem. This initial study aims to evaluate the potential application of palm oil based methyl ester sulfonate (MES) as a possible candidate for EOR application. Three qualitative and quantitative tests were performed on MES to evaluate its properties and capabilities for application in a specific offshore field. The results obtained from the qualitative compatibility and stability tests show that this anionic surfactant has great stability and compatibility with the brine solution as there are no visible signs of precipitation formation. However, the qualitative phase behavior test results indicated that the surfactant solution although has the ability to react with the crude oil but not at the required micro-emulsion state. In addition, the quantitative interfacial tension (IFT) test results also verified and supported the phase behavior test results where the strength of the MES was not adequate as a single surfactant system to achieve the ultra-low IFT state.



2019 ◽  
Vol 2 (2) ◽  
pp. 7-8
Author(s):  
Madison Barth ◽  
Japan Trivedi ◽  
Benedicta Nwani ◽  
Yosamin Esanullah

Of recent, there has been research and development in the technologies/techniques required to meet the ever-growing energy demand in the world. Oil is a major source of energy which is contained in over 50% of carbonate reservoirs. The oil/mixed wettability of carbonate rocks makes it technically challenging to recover the needed oil. The process of crude oil recovery has three different stages primary, secondary and tertiary recovery. Tertiary recovery is also known as enhanced oil recovery or EOR. EOR includes the use of surfactants to reduce the interfacial tension between a hydrocarbon and brine, thus suspending them both in a microemulsion. Surfactant performance can be affected by multiple variables, including brine salinity, surfactant concentration, and type of hydrocarbon. A petroleum engineer must take all variables into consideration when selecting a surfactant to make sure that its efficiency is as high as possible, especially because the use of surfactants is costly.  In this work, a chembetaine zwitter ionic surfactant of two different concentrations are evaluated at various synthetic formation brine salinities for their favourable wettability alteration and interfacial tension reduction in oil-wet carbonate- Silurian Dolomite. For the evaluation, fluid-fluid and rock-fluid analysis are carried out to select the optimal surfactant concentration and brine salinity with the greatest improved oil recovery potential.  Results are indicative that the surfactant at the two concentrations studied is compatible at the ranges of salinities evaluated. However, from the fluid-fluid analysis, there was no ultra-low interfacial tension that is needed for oil mobilization. More so, the rock-fluid analysis shows that the surfactant is not able to alter the wettability of oil-wet rocks favourably. The optimal surfactant slug for the greatest oil recovery, in this case, would be expected at 0.5% surfactant concentration in 10,000 ppm synthetic formation brine salinity. This study, therefore, serves as a guide for the design of optimal surfactant slug in oil-wet carbonate cores requires to reduce non-productive time, prevent reservoir damage and therefore improve recovery.



2018 ◽  
Vol 55 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Derong Xu ◽  
Wanli Kang ◽  
Liming Zhang ◽  
Jiatong Jiang ◽  
Zhe Li ◽  
...  






Sign in / Sign up

Export Citation Format

Share Document