scholarly journals The dorsolateral pre-frontal cortex bi-polar error-related potential in a locked-in patient implanted with a daily use brain–computer interface

Author(s):  
Zachary Freudenburg ◽  
Khaterah Kohneshin ◽  
Erik Aarnoutse ◽  
Mariska Vansteensel ◽  
Mariana Branco ◽  
...  

AbstractWhile brain computer interfaces (BCIs) offer the potential of allowing those suffering from loss of muscle control to once again fully engage with their environment by bypassing the affected motor system and decoding user intentions directly from brain activity, they are prone to errors. One possible avenue for BCI performance improvement is to detect when the BCI user perceives the BCI to have made an unintended action and thus take corrective actions. Error-related potentials (ErrPs) are neural correlates of error awareness and as such can provide an indication of when a BCI system is not performing according to the user’s intentions. Here, we investigate the brain signals of an implanted BCI user suffering from locked-in syndrome (LIS) due to late-stage ALS that prevents her from being able to speak or move but not from using her BCI at home on a daily basis to communicate, for the presence of error-related signals. We first establish the presence of an ErrP originating from the dorsolateral pre-frontal cortex (dLPFC) in response to errors made during a discrete feedback task that mimics the click-based spelling software she uses to communicate. Then, we show that this ErrP can also be elicited by cursor movement errors in a continuous BCI cursor control task. This work represents a first step toward detecting ErrPs during the daily home use of a communications BCI.

2013 ◽  
pp. 1549-1570
Author(s):  
Carmen Vidaurre ◽  
Andrea Kübler ◽  
Michael Tangermann ◽  
Klaus-Robert Müller ◽  
José del R. Millán

There is growing interest in the use of brain signals for communication and operation of devices, in particular, for physically disabled people. Brain states can be detected and translated into actions such as selecting a letter from a virtual keyboard, playing a video game, or moving a robot arm. This chapter presents what is known about the effects of visual stimuli on brain activity and introduces means of monitoring brain activity. Possibilities of brain-controlled interfaces, either with the brain signals as the sole input or in combination with the measured point of gaze, are discussed.


Author(s):  
Carmen Vidaurre ◽  
Andrea Kübler ◽  
Michael Tangermann ◽  
Klaus-Robert Müller ◽  
José del R. Millán

There is growing interest in the use of brain signals for communication and operation of devices – in particular, for physically disabled people. Brain states can be detected and translated into actions such as selecting a letter from a virtual keyboard, playing a video game, or moving a robot arm. This chapter presents what is known about the effects of visual stimuli on brain activity and introduces means of monitoring brain activity. Possibilities of brain-controlled interfaces, either with the brain signals as the sole input or in combination with the measured point of gaze, are discussed.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Davide Valeriani ◽  
Caterina Cinel ◽  
Luca Citi ◽  
Riccardo Poli

AbstractIn this paper we present, and test in two realistic environments, collaborative Brain-Computer Interfaces (cBCIs) that can significantly increase both the speed and the accuracy of perceptual group decision-making. The key distinguishing features of this work are: (1) our cBCIs combine behavioural, physiological and neural data in such a way as to be able to provide a group decision at any time after the quickest team member casts their vote, but the quality of a cBCI-assisted decision improves monotonically the longer the group decision can wait; (2) we apply our cBCIs to two realistic scenarios of military relevance (patrolling a dark corridor and manning an outpost at night where users need to identify any unidentified characters that appear) in which decisions are based on information conveyed through video feeds; and (3) our cBCIs exploit Event-Related Potentials (ERPs) elicited in brain activity by the appearance of potential threats but, uniquely, the appearance time is estimated automatically by the system (rather than being unrealistically provided to it). As a result of these elements, in the two test environments, groups assisted by our cBCIs make both more accurate and faster decisions than when individual decisions are integrated in more traditional manners.


2020 ◽  
Vol 49 (1) ◽  
pp. E2 ◽  
Author(s):  
Kai J. Miller ◽  
Dora Hermes ◽  
Nathan P. Staff

Brain–computer interfaces (BCIs) provide a way for the brain to interface directly with a computer. Many different brain signals can be used to control a device, varying in ease of recording, reliability, stability, temporal and spatial resolution, and noise. Electrocorticography (ECoG) electrodes provide a highly reliable signal from the human brain surface, and these signals have been used to decode movements, vision, and speech. ECoG-based BCIs are being developed to provide increased options for treatment and assistive devices for patients who have functional limitations. Decoding ECoG signals in real time provides direct feedback to the patient and can be used to control a cursor on a computer or an exoskeleton. In this review, the authors describe the current state of ECoG-based BCIs that are approaching clinical viability for restoring lost communication and motor function in patients with amyotrophic lateral sclerosis or tetraplegia. These studies provide a proof of principle and the possibility that ECoG-based BCI technology may also be useful in the future for assisting in the cortical rehabilitation of patients who have suffered a stroke.


2021 ◽  
pp. 2150048
Author(s):  
Hamidreza Namazi ◽  
Avinash Menon ◽  
Ondrej Krejcar

Our eyes are always in search of exploring our surrounding environment. The brain controls our eyes’ activities through the nervous system. Hence, analyzing the correlation between the activities of the eyes and brain is an important area of research in vision science. This paper evaluates the coupling between the reactions of the eyes and the brain in response to different moving visual stimuli. Since both eye movements and EEG signals (as the indicator of brain activity) contain information, we employed Shannon entropy to decode the coupling between them. Ten subjects looked at four moving objects (dynamic visual stimuli) with different information contents while we recorded their EEG signals and eye movements. The results demonstrated that the changes in the information contents of eye movements and EEG signals are strongly correlated ([Formula: see text]), which indicates a strong correlation between brain and eye activities. This analysis could be extended to evaluate the correlation between the activities of other organs versus the brain.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Koun-Tem Sun ◽  
Kai-Lung Hsieh ◽  
Syuan-Rong Syu

This study proposes a home care system (HCS) based on a brain-computer interface (BCI) with a smartphone. The HCS provides daily help to motor-disabled people when a caregiver is not present. The aim of the study is two-fold: (1) to develop a BCI-based home care system to help end-users control their household appliances, and (2) to assess whether the architecture of the HCS is easy for motor-disabled people to use. A motion-strip is used to evoke event-related potentials (ERPs) in the brain of the user, and the system immediately processes these potentials to decode the user’s intentions. The system, then, translates these intentions into application commands and sends them via Bluetooth to the user’s smartphone to make an emergency call or to execute the corresponding app to emit an infrared (IR) signal to control a household appliance. Fifteen healthy and seven motor-disabled subjects (including the one with ALS) participated in the experiment. The average online accuracy was 81.8% and 78.1%, respectively. Using component N2P3 to discriminate targets from nontargets can increase the efficiency of the system. Results showed that the system allows end-users to use smartphone apps as long as they are using their brain waves. More important, only one electrode O1 is required to measure EEG signals, giving the system good practical usability. The HCS can, thus, improve the autonomy and self-reliance of its end-users.


Proceedings ◽  
2018 ◽  
Vol 2 (18) ◽  
pp. 1179 ◽  
Author(s):  
Francisco Laport ◽  
Francisco J. Vazquez-Araujo ◽  
Paula M. Castro ◽  
Adriana Dapena

A brain-computer interface for controlling elements commonly used at home is presented in this paper. It includes the electroencephalography device needed to acquire signals associated to the brain activity, the algorithms for artefact reduction and event classification, and the communication protocol.


Author(s):  
Rohit Bhat ◽  
Akshay Deshpande ◽  
Rahul Rai ◽  
Ehsan Tarkesh Esfahani

The aim of this paper is to explore a new multimodal Computer Aided Design (CAD) platform based on brain-computer interfaces and touch based systems. The paper describes experiments and algorithms for manipulating geometrical objects in CAD systems using touch-based gestures and movement imagery detected though brain waves. Gestures associated with touch based systems are subjected to ambiguity since they are two dimensional in nature. Brain signals are considered here as the main source to resolve these ambiguities. The brainwaves are recorded in terms of electroencephalogram (EEG) signals. Users wear a neuroheadset and try to move and rotate a target object on a touch screen. As they perform these actions, the EEG headset collects brain activity from 14 locations on the scalp. The data is analyzed in the time-frequency domain to detect the desynchronizations of certain frequency bands (3–7Hz, 8–13 Hz, 14–20Hz 21–29Hz and 30–50Hz) in the temporal cortex as an indication of motor imagery.


e-Neuroforum ◽  
2015 ◽  
Vol 21 (4) ◽  
Author(s):  
Niels Birbaumer ◽  
Ujwal Chaudhary

AbstractBrain-computer interfaces (BCI) use neuroelectric and metabolic brain activity to activate peripheral devices and computers without mediation of the motor system. In order to activate the BCI patients have to learn a certain amount of brain control. Self-regulation of brain activity was found to follow the principles of skill learning and instrumental conditioning. This review focuses on the clinical application of brain-computer interfaces in paralyzed patients with locked-in syndrome and completely locked-in syndrome (CLIS). It was shown that electroencephalogram (EEG)-based brain-computer interfaces allow selection of letters and words in a computer menu with different types of EEG signals. However, in patients with CLIS without any muscular control, particularly of eye movements, classical EEG-based brain-computer interfaces were not successful. Even after implantation of electrodes in the human brain, CLIS patients were unable to communicate. We developed a theoretical model explaining this fundamental deficit in instrumental learning of brain control and voluntary communication: patients in complete paralysis extinguish goal-directed responseoriented thinking and intentions. Therefore, a reflexive classical conditioning procedure was developed and metabolic brain signals measured with near infrared spectroscopy were used in CLIS patients to answer simple questions with a “yes” or “no”-brain response. The data collected so far are promising and show that for the first time CLIS patients communicate with such a BCI system using metabolic brain signals and simple reflexive learning tasks. Finally, brain machine interfaces and rehabilitation in chronic stroke are described demonstrating in chronic stroke patients without any residual upper limb movement a surprising recovery of motor function on the motor level as well as on the brain level. After extensive combined BCI training with behaviorally oriented physiotherapy, significant improvement in motor function was shown in this previously intractable paralysis. In conclusion, clinical application of brain machine interfaces in well-defined and circumscribed neurological disorders have demonstrated surprisingly positive effects. The application of BCIs to psychiatric and clinical-psychological problems, however, at present did not result in substantial improvement of complex behavioral disorders.


Sign in / Sign up

Export Citation Format

Share Document