Brain-Computer Interfaces and Visual Activity

Author(s):  
Carmen Vidaurre ◽  
Andrea Kübler ◽  
Michael Tangermann ◽  
Klaus-Robert Müller ◽  
José del R. Millán

There is growing interest in the use of brain signals for communication and operation of devices – in particular, for physically disabled people. Brain states can be detected and translated into actions such as selecting a letter from a virtual keyboard, playing a video game, or moving a robot arm. This chapter presents what is known about the effects of visual stimuli on brain activity and introduces means of monitoring brain activity. Possibilities of brain-controlled interfaces, either with the brain signals as the sole input or in combination with the measured point of gaze, are discussed.

2013 ◽  
pp. 1549-1570
Author(s):  
Carmen Vidaurre ◽  
Andrea Kübler ◽  
Michael Tangermann ◽  
Klaus-Robert Müller ◽  
José del R. Millán

There is growing interest in the use of brain signals for communication and operation of devices, in particular, for physically disabled people. Brain states can be detected and translated into actions such as selecting a letter from a virtual keyboard, playing a video game, or moving a robot arm. This chapter presents what is known about the effects of visual stimuli on brain activity and introduces means of monitoring brain activity. Possibilities of brain-controlled interfaces, either with the brain signals as the sole input or in combination with the measured point of gaze, are discussed.


2021 ◽  
pp. 2150048
Author(s):  
Hamidreza Namazi ◽  
Avinash Menon ◽  
Ondrej Krejcar

Our eyes are always in search of exploring our surrounding environment. The brain controls our eyes’ activities through the nervous system. Hence, analyzing the correlation between the activities of the eyes and brain is an important area of research in vision science. This paper evaluates the coupling between the reactions of the eyes and the brain in response to different moving visual stimuli. Since both eye movements and EEG signals (as the indicator of brain activity) contain information, we employed Shannon entropy to decode the coupling between them. Ten subjects looked at four moving objects (dynamic visual stimuli) with different information contents while we recorded their EEG signals and eye movements. The results demonstrated that the changes in the information contents of eye movements and EEG signals are strongly correlated ([Formula: see text]), which indicates a strong correlation between brain and eye activities. This analysis could be extended to evaluate the correlation between the activities of other organs versus the brain.


Author(s):  
Zachary Freudenburg ◽  
Khaterah Kohneshin ◽  
Erik Aarnoutse ◽  
Mariska Vansteensel ◽  
Mariana Branco ◽  
...  

AbstractWhile brain computer interfaces (BCIs) offer the potential of allowing those suffering from loss of muscle control to once again fully engage with their environment by bypassing the affected motor system and decoding user intentions directly from brain activity, they are prone to errors. One possible avenue for BCI performance improvement is to detect when the BCI user perceives the BCI to have made an unintended action and thus take corrective actions. Error-related potentials (ErrPs) are neural correlates of error awareness and as such can provide an indication of when a BCI system is not performing according to the user’s intentions. Here, we investigate the brain signals of an implanted BCI user suffering from locked-in syndrome (LIS) due to late-stage ALS that prevents her from being able to speak or move but not from using her BCI at home on a daily basis to communicate, for the presence of error-related signals. We first establish the presence of an ErrP originating from the dorsolateral pre-frontal cortex (dLPFC) in response to errors made during a discrete feedback task that mimics the click-based spelling software she uses to communicate. Then, we show that this ErrP can also be elicited by cursor movement errors in a continuous BCI cursor control task. This work represents a first step toward detecting ErrPs during the daily home use of a communications BCI.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2020 ◽  
Vol 49 (1) ◽  
pp. E2 ◽  
Author(s):  
Kai J. Miller ◽  
Dora Hermes ◽  
Nathan P. Staff

Brain–computer interfaces (BCIs) provide a way for the brain to interface directly with a computer. Many different brain signals can be used to control a device, varying in ease of recording, reliability, stability, temporal and spatial resolution, and noise. Electrocorticography (ECoG) electrodes provide a highly reliable signal from the human brain surface, and these signals have been used to decode movements, vision, and speech. ECoG-based BCIs are being developed to provide increased options for treatment and assistive devices for patients who have functional limitations. Decoding ECoG signals in real time provides direct feedback to the patient and can be used to control a cursor on a computer or an exoskeleton. In this review, the authors describe the current state of ECoG-based BCIs that are approaching clinical viability for restoring lost communication and motor function in patients with amyotrophic lateral sclerosis or tetraplegia. These studies provide a proof of principle and the possibility that ECoG-based BCI technology may also be useful in the future for assisting in the cortical rehabilitation of patients who have suffered a stroke.


2020 ◽  
Author(s):  
Daniele Grattarola ◽  
Lorenzo Livi ◽  
Cesare Alippi ◽  
Richard Wennberg ◽  
Taufik Valiante

Abstract Graph neural networks (GNNs) and the attention mechanism are two of the most significant advances in artificial intelligence methods over the past few years. The former are neural networks able to process graph-structured data, while the latter learns to selectively focus on those parts of the input that are more relevant for the task at hand. In this paper, we propose a methodology for seizure localisation which combines the two approaches. Our method is composed of several blocks. First, we represent brain states in a compact way by computing functional networks from intracranial electroencephalography recordings, using metrics to quantify the coupling between the activity of different brain areas. Then, we train a GNN to correctly distinguish between functional networks associated with interictal and ictal phases. The GNN is equipped with an attention-based layer which automatically learns to identify those regions of the brain (associated with individual electrodes) that are most important for a correct classification. The localisation of these regions is fully unsupervised, meaning that it does not use any prior information regarding the seizure onset zone. We report results both for human patients and for simulators of brain activity. We show that the regions of interest identified by the GNN strongly correlate with the localisation of the seizure onset zone reported by electroencephalographers. We also show that our GNN exhibits uncertainty on those patients for which the clinical localisation was also unsuccessful, highlighting the robustness of the proposed approach.


Proceedings ◽  
2018 ◽  
Vol 2 (18) ◽  
pp. 1179 ◽  
Author(s):  
Francisco Laport ◽  
Francisco J. Vazquez-Araujo ◽  
Paula M. Castro ◽  
Adriana Dapena

A brain-computer interface for controlling elements commonly used at home is presented in this paper. It includes the electroencephalography device needed to acquire signals associated to the brain activity, the algorithms for artefact reduction and event classification, and the communication protocol.


Author(s):  
Rohit Bhat ◽  
Akshay Deshpande ◽  
Rahul Rai ◽  
Ehsan Tarkesh Esfahani

The aim of this paper is to explore a new multimodal Computer Aided Design (CAD) platform based on brain-computer interfaces and touch based systems. The paper describes experiments and algorithms for manipulating geometrical objects in CAD systems using touch-based gestures and movement imagery detected though brain waves. Gestures associated with touch based systems are subjected to ambiguity since they are two dimensional in nature. Brain signals are considered here as the main source to resolve these ambiguities. The brainwaves are recorded in terms of electroencephalogram (EEG) signals. Users wear a neuroheadset and try to move and rotate a target object on a touch screen. As they perform these actions, the EEG headset collects brain activity from 14 locations on the scalp. The data is analyzed in the time-frequency domain to detect the desynchronizations of certain frequency bands (3–7Hz, 8–13 Hz, 14–20Hz 21–29Hz and 30–50Hz) in the temporal cortex as an indication of motor imagery.


e-Neuroforum ◽  
2015 ◽  
Vol 21 (4) ◽  
Author(s):  
Niels Birbaumer ◽  
Ujwal Chaudhary

AbstractBrain-computer interfaces (BCI) use neuroelectric and metabolic brain activity to activate peripheral devices and computers without mediation of the motor system. In order to activate the BCI patients have to learn a certain amount of brain control. Self-regulation of brain activity was found to follow the principles of skill learning and instrumental conditioning. This review focuses on the clinical application of brain-computer interfaces in paralyzed patients with locked-in syndrome and completely locked-in syndrome (CLIS). It was shown that electroencephalogram (EEG)-based brain-computer interfaces allow selection of letters and words in a computer menu with different types of EEG signals. However, in patients with CLIS without any muscular control, particularly of eye movements, classical EEG-based brain-computer interfaces were not successful. Even after implantation of electrodes in the human brain, CLIS patients were unable to communicate. We developed a theoretical model explaining this fundamental deficit in instrumental learning of brain control and voluntary communication: patients in complete paralysis extinguish goal-directed responseoriented thinking and intentions. Therefore, a reflexive classical conditioning procedure was developed and metabolic brain signals measured with near infrared spectroscopy were used in CLIS patients to answer simple questions with a “yes” or “no”-brain response. The data collected so far are promising and show that for the first time CLIS patients communicate with such a BCI system using metabolic brain signals and simple reflexive learning tasks. Finally, brain machine interfaces and rehabilitation in chronic stroke are described demonstrating in chronic stroke patients without any residual upper limb movement a surprising recovery of motor function on the motor level as well as on the brain level. After extensive combined BCI training with behaviorally oriented physiotherapy, significant improvement in motor function was shown in this previously intractable paralysis. In conclusion, clinical application of brain machine interfaces in well-defined and circumscribed neurological disorders have demonstrated surprisingly positive effects. The application of BCIs to psychiatric and clinical-psychological problems, however, at present did not result in substantial improvement of complex behavioral disorders.


Sign in / Sign up

Export Citation Format

Share Document