Laboratory investigation on relationship between degree of saturation, B-value and P-wave velocity

2013 ◽  
Vol 20 (7) ◽  
pp. 2001-2007 ◽  
Author(s):  
Xiao-qiang Gu ◽  
Jun Yang ◽  
Mao-song Huang
2002 ◽  
Vol 42 (1) ◽  
pp. 121-129 ◽  
Author(s):  
SHUJI TAMURA ◽  
KOHJI TOKIMATSU ◽  
AKIO ABE ◽  
MASAYOSHI SATO

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Diana Cordeiro ◽  
Fausto Molina-Gómez ◽  
Cristiana Ferreira ◽  
Sara Rios ◽  
António Viana da Fonseca

Earthquake-induced liquefaction is one of the major causes of building damage as it decreases the strength and stiffness of soil. The liquefaction resistance of soils increases significantly as the degree of saturation decreases, making soil desaturation an effective measure for the mitigation of this phenomenon. This paper presents a comparative analysis of liquefaction resistance of an alluvial sand from Aveiro (Portugal) under fully and partially saturated conditions. For this purpose, an in situ characterisation based on CPTu and a laboratory series of cyclic triaxial tests were carried out. The cyclic triaxial tests were conducted under undrained conditions on remoulded specimens with different degrees of saturation, including the full saturation. On the other hand, the triaxial apparatus was instrumented with Hall-effect transducers to accurately measure the strains during all testing phases. In addition, it was equipped with piezoelectric transducers to measure seismic waves velocities, namely P-wave velocity, for evaluation of the saturation level of the specimen in parallel with the Skempton’s B parameter. Hence, relations between the B-value, and P-wave velocity and cyclic strength resistance are presented. The number of cycles to trigger liquefaction, considering the pore pressure build-up criterion, is presented for the different degrees of saturation. Results confirmed the increase in liquefaction resistance for lower degrees of saturation in this soil.


2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


Sign in / Sign up

Export Citation Format

Share Document