Effect of hot extrusion on microstructure and tribological behavior of Al2O3p reinforced 7075 aluminum-matrix composites

2021 ◽  
Vol 28 (8) ◽  
pp. 2269-2284
Author(s):  
Yu-shun Lei ◽  
Hong Yan ◽  
Zhi-fan Wei ◽  
Jun-jie Xiong ◽  
Peng-xiang Zhang ◽  
...  
2014 ◽  
Vol 5 (3) ◽  
pp. 255-262 ◽  
Author(s):  
I. A. Evdokimov ◽  
T. A. Chernyshova ◽  
G. I. Pivovarov ◽  
P. A. Bykov ◽  
L. A. Ivanov ◽  
...  

2018 ◽  
Vol 7 (2.4) ◽  
pp. 117 ◽  
Author(s):  
Pranav Dev Srivyas ◽  
M S. Charoo

This review aims to explore the fundamental mechanical and tribological behavior Aluminum matrix composites (AMCs) reinforced with different reinforcements. Aluminum matrix composites are considered to be the new emerging class of materials which are having the tailored properties for specific applications. AMCs are the advanced engineering materials having superior properties as comparison to other conventional aluminum alloys. AMCs exhibits attractive properties such as high hardness, better yield strength, strength to weight ratio, high thermal conductivity, low coefficient of thermal expansion, superior wear and corrosion resistance. In recent times, because of these properties they have repealed keen interest for various potential applications in aerospace, automotive and various other structural applications.. Extensive research and development has been made in the Al-based MMCs with every possible alloy and different reinforcements so as to get the material of desired properties. By suitable use of different reinforcements in the Al metal matrix a wide range of properties combination can be obtained. The fundamental mechanical and tribological behavior of different reinforcements under dry and wet lubricated sliding conditions is recently being studied. It is reported that various reinforcement were successfully employed to decrease friction and wear in various applications. A comprehensive review is provided with the aim to analyze such properties of different reinforcements. 


2017 ◽  
Vol 62 (2) ◽  
pp. 1267-1270
Author(s):  
D.-H. Kim ◽  
T.-J. Kim ◽  
S.-G. Lim

AbstractIn this study, mechanical properties and microstructures of extruded aluminum matrix composites were investigated. The composite materials were manufactured by two step methods: powder metallurgy (mixture of aluminum powder and carbon fiber using a turbular mixer, pressing of mixed aluminum powder and carbon fiber using a cold isostatic pressing) and hot extrusion of pressed aluminum powder and carbon fiber. For the mixing of Al powder and carbon fibers, aluminum powder was used as a powder with an average particle size of 30 micrometer and the addition of the carbon fibers was 50% of volume. In order to make mixing easier, it was mixed under an optimal condition of turbular mixer with a rotational speed of 60 rpm and time of 1800s. The process of the hot-extrusion was heated at 450°C for 1 hour. Then, it was hot-extruded with a condition of extrusion ratio of 19 and ram speed of 2 mm/s. The microstructural analysis of extruded aluminum matrix composites bars and semi-solid casted alloys were carried out with the optical microscope, scanning electron microscope and X-ray diffraction. Its mechanical properties were evaluated by Vickers hardness and tensile test.


2019 ◽  
Vol 23 (1) ◽  
pp. 198-201 ◽  
Author(s):  
S. Sakthivelu ◽  
M. Meignanamoorthy ◽  
M. Ravichandran ◽  
P. P. Sethusundaram

AbstractThis research made an attempt to synthesize aluminum metal matrix composites through stir casting technique. The matrix material chosen in this study was AA7050 and the reinforcement material was ZrSiO4. The composites AA7050, AA7050-10%ZrSiO4, and AA7050-15%ZrSiO4were used. The wear behavior of the aluminum matrix composites was investigated by using pin-on-disc tribometer. The advanced material has substantial development in tribological behavior when the reinforcement percentage is increased. From the experimental results, it was confirmed that sliding distance of 1200 m, applied load of 3 N and sliding speed of 2 m/s result in minimum wear loss and coefficient of friction, while adding 10%ZrSiO4to the AA7050.


Sign in / Sign up

Export Citation Format

Share Document