scholarly journals Aluminum metal matrix composites a review of reinforcement; mechanical and tribological behavior

2018 ◽  
Vol 7 (2.4) ◽  
pp. 117 ◽  
Author(s):  
Pranav Dev Srivyas ◽  
M S. Charoo

This review aims to explore the fundamental mechanical and tribological behavior Aluminum matrix composites (AMCs) reinforced with different reinforcements. Aluminum matrix composites are considered to be the new emerging class of materials which are having the tailored properties for specific applications. AMCs are the advanced engineering materials having superior properties as comparison to other conventional aluminum alloys. AMCs exhibits attractive properties such as high hardness, better yield strength, strength to weight ratio, high thermal conductivity, low coefficient of thermal expansion, superior wear and corrosion resistance. In recent times, because of these properties they have repealed keen interest for various potential applications in aerospace, automotive and various other structural applications.. Extensive research and development has been made in the Al-based MMCs with every possible alloy and different reinforcements so as to get the material of desired properties. By suitable use of different reinforcements in the Al metal matrix a wide range of properties combination can be obtained. The fundamental mechanical and tribological behavior of different reinforcements under dry and wet lubricated sliding conditions is recently being studied. It is reported that various reinforcement were successfully employed to decrease friction and wear in various applications. A comprehensive review is provided with the aim to analyze such properties of different reinforcements. 

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2014 ◽  
Vol 5 (3) ◽  
pp. 255-262 ◽  
Author(s):  
I. A. Evdokimov ◽  
T. A. Chernyshova ◽  
G. I. Pivovarov ◽  
P. A. Bykov ◽  
L. A. Ivanov ◽  
...  

2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2021 ◽  
Vol 87 (5) ◽  
pp. 34-42
Author(s):  
N. B. Podymova ◽  
I. E. Kalashnikov ◽  
L. I. Kobeleva

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4030 ◽  
Author(s):  
Amélie Veillère ◽  
Hiroki Kurita ◽  
Akira Kawasaki ◽  
Yongfeng Lu ◽  
Jean-Marc Heintz ◽  
...  

Aluminum matrix composites reinforced with carbon fibers or diamond particles have been fabricated by a powder metallurgy process and characterized for thermal management applications. Al/C composite is a nonreactive system (absence of chemical reaction between the metallic matrix and the ceramic reinforcement) due to the presence of an alumina layer on the surface of the aluminum powder particles. In order to achieve fully dense materials and to enhance the thermo-mechanical properties of the Al/C composite materials, a semi-liquid method has been carried out with the addition of a small amount of Al-Si alloys in the Al matrix. Thermal conductivity and coefficient of thermal expansion were enhanced as compared with Al/C composites without Al-Si alloys and the experimental values were close to the ones predicted by analytical models.


Author(s):  
Fuat Okumus ◽  
Aydin Turgut ◽  
Erol Sancaktar

Abstract In this study, the use of coating layers is investigated to reduce thermal stresses in the metal matrix composites which have a mismatch in coefficients of thermal expansions in fiber and matrix components. The thermoelastic solutions are obtained based on a three-cylinder model. It is shown that the effectiveness of the layer can be defined by the product of its coefficient of thermal expansion and thickness. Consequently, a compensating layer with a sufficiently high coefficient of thermal expansion can reduce the thermal stresses in the metal matrix. The study is based on a concentric three cylinder model isolating individual steel fibers surrounded with a coating layer and an aluminum matrix layer. Only monotonic cooling is studied.


2008 ◽  
Vol 395 ◽  
pp. 157-178
Author(s):  
Ji Xiong Han ◽  
Yong Ching Chen ◽  
Vijay K. Vasudevan

Studies were carried out on microstructure evolution and mechanical behavior of an Al matrix–nanoscale Al2O3 particulate-reinforced composite. The thermal stability of the composite, evaluated by heat treating specimens at temperatures from 300 to 600 °C for times varying from 1 to 100 hours, revealed that the nano-sized (30-100 nm) Al2O3 particles present in the as-received/ascast material coalesced into larger particles, but with sizes still in the 100 to 500 nm range. Despite the coarsening of the particles, high hardness was retained. The tensile properties of both the as-cast DSC material and those thermally soaked for 500 hours at a number of temperatures were evaluated. The results showed that the yield strength was quite high (283 MPa) at room temperature and decreased nearly linearly with temperature, though values as high as 110 MPa were obtained at 400oC. Thermal soaking did not have a detrimental effect on strength. Although the macroscopic ductility of both unsoaked and soaked materials remained quite low over the entire temperature range, SEM observations of the fracture surfaces provided substantial evidence for high localized plasticity as manifested by stretching, tearing and void formation in the Al matrix around the oxide particles. Possible strengthening mechanisms, including grain size reduction, Orowan bypass and forest hardening, were considered and modeled. Good agreement between the calculated and experimental strengths was obtained, and majority of the strengthening at room temperature was found to come from forest hardening (i.e, increase in dislocation density caused by the thermal expansion mismatch between Al and Al2O3), with secondary contributions from the Orowan mechanism. TEM observations provided confirmatory evidence for these mechanisms. The decrease in strength at higher temperatures was attributed to a diminishing contribution from forest hardening due to recovery processes.


2013 ◽  
Vol 762 ◽  
pp. 476-482
Author(s):  
Ji Tai Niu ◽  
Zeng Gao ◽  
Dong Feng Cheng ◽  
Xi Tao Wang ◽  
Si Jie Chen

Aluminum metal matrix composites (Al-MMCs) are new promising materials for aviation, aerospace and automotive industries. However, due to the poor weldability they have very limited applications. In this paper, the authors present the welding achievements of Al-MMCs developed by their scientific research team in recent years. Laser welding, liquid phase impact diffusion welding and vacuum brazing were utilized. Based on analysis of microstructure, good joints can be achieved by using these welding methods.


Sign in / Sign up

Export Citation Format

Share Document