Upgrading Wastewater Treatment by Water Hyacinth in Developing Countries

1990 ◽  
Vol 22 (7-8) ◽  
pp. 153-160 ◽  
Author(s):  
Pradeep Kumar ◽  
R. J. Garde

With increasing stress on existing wastewater treatment systems, it is necessary either to upgrade the treatment unit(s) or install an entirely new treatment plant. Obviously, the upgrading is preferred over the alternative of having a new system. Keeping this in view, in the present project, an attempt has been made to explore the possibility of upgrading existing facultative ponds using water hyacinth. Bench-scale batch studies were designed to compare the performance of hyacinth treatment system with facultative ponds. Investigations were carried out with synthetic wastewater having COD in the range of 32.5-1090 mg/l. The efficiency of COD removal in water hyacinth ponds was 15-20 percent more than the facultative ponds. Based on the results, an empirical model has been proposed for COD removal kinetics. In the second phase of the project a hyacinth pond was continuously operated. BOD, COD, TS, TN, TP, pH, and DO were regularly monitored. However, the DO of the effluent from hyacinth treatment system was considerably reduced. Effluent should be aerated before it is discharged. The results indicate that the existing facultative ponds can be stalked with water hyacinth to improve their performance as well as hyacinth treatment systems can be installed to support the conventional treatment.

2022 ◽  
Vol 31 (2) ◽  
pp. 135-142
Author(s):  
Lovely Aktar ◽  
Mohammad Moniruzzaman ◽  
Yasuzo Sakai ◽  
Mihir Lal Saha

This study was undertaken to evaluate the removal of lipid-rich organic matter from wastewater by lipase producing bacteria. Ten potential lipase producing bacteria were isolated from lipid-rich environments in and around Dhaka Metropolitan city. Three of them produced lipase higher than 10 U/ml. These three isolates and their consortium were used for synthetic wastewater treatment in the laboratory. The initial COD value of synthetic wastewater was 1,200 mg/l. COD removal efficiencies in the synthetic wastewater were 74.75, 73.33 and 66.67% by the Stenotrophomonas maltophilia e-a22, Pseudomonas aeruginosa 12 and Bacillus subtilis 20B, respectively. Stenotrophomonas maltophilia showed better COD removal performance (74.75%) in case of monoculture. But consortium showed better COD removal (83.33%) than that of monoculture. Therefore, it could be concluded that consortium of three isolates will be more useful for wastewater treatment as seed cultures in the wastewater treatment plant associated with the lipid-rich wastewater. Plant Tissue Cult. & Biotech. 31(2): 135-142, 2021 (December)


1997 ◽  
Vol 35 (6) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Yoshihiko Iwasaki

This paper describes a pilot plant study on the performance of a hybrid small municipal wastewater treatment system consisting of a jet mixed separator(JMS) and upgraded RBC. The JMS was used as a pre-treatment of the RBC instead of the primary clarifier. The treatment capacity of the system was fixed at 100 m3/d, corresponding to the hydraulic loading to the RBC of 117 L/m2/d. The effluent from the grid chamber at a municipal wastewater treatment plant was fed into the hybrid system. The RBC was operated using the electric power produced by a solar electric generation panel with a surface area of 8 m2 under enough sunlight. In order to reduce the organic loading to the RBC, polyaluminium chloride(PAC) was added to the JMS influent to remove the colloidal and suspended organic particles. At the operational condition where the A1 dosage and hydraulic retention time of the JMS were fixed at 5 g/m3 and 45 min., respectively, the average effluent water quality of hybrid system was as follows: TOC=8 g/m3, Total BOD=8 g/m3, SS=8 g/m3, Turbidity=6 TU, NH4-N=7 g/m3, T-P=0.5 g/m3. In this operating condition, electric power consumption of the RBC for treating unit volume of wastewater is only 0.07 KWH/m3.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


2017 ◽  
Vol 28 (4) ◽  
pp. 477-489 ◽  
Author(s):  
Daiane Cristina de Oliveira Garcia ◽  
Liliane Lazzari Albertin ◽  
Tsunao Matsumoto

Purpose The purpose of this paper is to evaluate the efficiency of a duckweed pond in the polishing of a stabilization pond effluent, as well as quantify its biomass production. Once an adequate destination is given to the produced biomass, the wastewater treatment plant can work in a sustainable and integrated way. Design/methodology/approach The duckweed pond consisted of a tank with volume 0.44 m3, operating in continuous flow with an outflow of 0.12 m3/day and hydraulic retention time of 3.8 days. Effluent samples were collected before and after the treatment, with analyzes made: daily-pH, dissolved oxygen and temperature; twice a week – total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD); and weekly – total solids (TS) and Biochemical Oxygen Demand (BOD5). The duckweeds were collected each for seven days for its production quantification. Findings The highest efficiency of TN, TP, COD, BOD5 and TS removal were of 74.67, 66.18, 88.12, 91.14 and 48.9 percent, respectively. The highest biomass production rate was 10.33 g/m2/day in dry mass. Research limitations/implications There was great variation in biomass production, which may be related to the stabilization pond effluent conditions. The evaluation of the effluent composition, which will be treated with duckweeds, is recommended. Practical implications The evaluated treatment system obtained positive results for the reduction in the analyzed variables concentration, being an efficient technology and with operational simplicity for the domestic effluent polishing. Originality/value The motivation of this work was to bring a simple system of treatment and to give value to a domestic wastewater treatment system in a way that, at the same time the effluent polluter level is reduced and it is also possible to produce biomass during the treatment process.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
K. Klinksieg ◽  
T. Dockhorn ◽  
N. Dichtl

Full-scale and lab-scale research experiments were conducted to determine the phosphorous precipitation efficiency of iron hydroxide sludge from drinking water treatment. During full-scale investigations at a wastewater treatment plant, ferric sludge was added to the inflow of the primary settling tank in a first experimental phase and to the inflow of the aeration tank in a second phase. In the outflow of the mechanical stage and in the outflow of the biological stage, a reduction of the PO4-P concentrations could be observed. The concentration of COD, the SVI and the filament abundance were not changed significantly by adding the ferric sludge to the wastewater treatment plant. In lab tests, improved precipitation efficiency of the ferric sludge could be achieved by using anaerobic conditions and acid pulping. The research showed that the wastewater treatment process can benefit from the reuse of ferric sludge from drinking waterworks and that this also presents an inexpensive recycling option for these sludges.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2381-2384 ◽  
Author(s):  
C. Polprasert ◽  
S. Kessomboon ◽  
W. Kanjanaprapin

Small-scale and pilot-scale experiments were conducted on pig wastewater treatment in water hyacinth (Eichhornia crassipesl ponds. The main objectives were to evaluate the treatment performance of the water hyacinth ponds and to determine suitable operating conditions. From the experimental results obtained, the optimum organic loading rate was found to be 200 kg COD/(ha.d), while the hydraulic retention times were proposed to be 10-20 days. The % COD removal in the small-scale water hyacinth ponds were 74-93, while for the pilot-scale ponds the % COD removal were 52-72 because of fluctuations in the influent wastewater characteristics and occasional insect attacks on the water hyacinth leaves and stems. Similar results were obtained for N removal. Although the water hyacinth ponds were found to be feasible for pig wastewater treatment, at least one polishing pond in series should be provided to polish the water hyacinth pond effluents before discharging into the environment.


2019 ◽  
Vol 24 (1) ◽  
pp. 135-163
Author(s):  
Jader Martínez Girón ◽  
Jenny Vanessa Marín-Rivera ◽  
Mauricio Quintero-Angel

Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.


2008 ◽  
Vol 58 (2) ◽  
pp. 435-438 ◽  
Author(s):  
M. Kornaros ◽  
C. Marazioti ◽  
G. Lyberatos

SBRs are usually preferred as small and decentralized wastewater treatment systems. We have demonstrated previously that using a frequent enough switching between aerobic and anoxic conditions and a specific to the treated wastewater aerobic to anoxic phase ratio, it is possible to by-pass the second step of nitrification (i.e. conversion of nitrite to nitrate nitrogen). This innovative process for nitrate by-pass has been branded as UP-PND (University of Patras-Partial Nitrification Denitrification) (WO 2006/129132). The proved methodology was successfully transferred from a lab-scale SBR reactor treating synthetic wastewater to a pilot-scale SBR system treating real wastewater. In this work we present the results from the operation of this pilot-scale SBR, constructed in the Wastewater Treatment Plant of Patras (Greece), using 6-hour, 8-hour and 12-hour cycles. It is demonstrated that three pairs of aerobic/anoxic phases with a relative duration of 1:2 (8-hour cycle) and 2:3 (12-hour cycle) secures the desired by-pass of nitrate production.


2012 ◽  
Vol 428 ◽  
pp. 169-175
Author(s):  
Guo Kai Fu ◽  
Yi Yue Hu ◽  
Zhi Zhang

A reliable model for any wastewater treatment plant is essential in order to provide a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, a variable metric chaos optimization neural network (VMCNW) prediction model is established standing on the actual operation data in the wasterwater treatment system. The model overcomes several disadvantages of the conventional BP neural network. Namely:slow convergence, low accuracy and difficulty in finding the global optimum.The results of model calculation show that the predicted value can better match measured value,played a effect of simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provide a simple and practical way for the operation and management in wastewater treatment plant,and have good research and engineering practical value.


Sign in / Sign up

Export Citation Format

Share Document