Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance

Author(s):  
Shuo Wei ◽  
Lei Du ◽  
Shuo Chen ◽  
Hongtao Yu ◽  
Xie Quan
2020 ◽  
pp. 095400832096051
Author(s):  
Weiliang Yuan ◽  
Lingzhi Zhu ◽  
Chao Luo ◽  
Hongguang Liu ◽  
Zan Chen ◽  
...  

Graphene oxide (GO) was modified using isocyanate (MDI) and ethylenediaminetetraacetic acid (EDTA) for the fabrication of flat-sheet GO-MDI-EDTA composite. Subsequently, this composite was incorporated into the Matrimid® (PI) matrix to fabricate mixed matrix membranes (MMMs) for CO2 separation. The influence of GO-MDI-EDTA composite on the CO2 separation properties of PI was evaluated. Scanning electron microscopy showed that GO-MDI-EDTA enhanced the interface compatibility with the polymer matrix. MMMs showed significantly enhanced CO2 permeability compared with pure Matrimid® membrane. The improvement of CO2 separation performance can be attributed to the uniform dispersion of GO-MDI-EDTA sheets in the PI matrix. The carboxylic group contained in GO-MDI-EDTA has a good affinity with CO2, and the increased carboxyl sites can effectively transport CO2. The GO-MDI-EDTA lamellar structure increased the gas transmission path, which is not conducive to the passage of large dynamic diameter gases (CH4, N2), thereby improving the separation performance. The MMMs doped with GO-MDI-EDTA-0.5% showed optimal gas separation performance. The CO2 permeability is 12.85 Barrer, the CO2/N2 selectivity is 47.59, and the CO2/CH4 selectivity is 53.54.


Langmuir ◽  
2012 ◽  
Vol 28 (10) ◽  
pp. 4776-4786 ◽  
Author(s):  
Panpan Wang ◽  
Jun Ma ◽  
Zhenghui Wang ◽  
Fengmei Shi ◽  
Qianliang Liu

2017 ◽  
Vol 134 (31) ◽  
pp. 45149 ◽  
Author(s):  
Shu Guang Ouyang ◽  
Jun Yan Yao ◽  
Guang Heng Wei Zhu ◽  
Zhao Yue Liu ◽  
Chi Feng ◽  
...  

Author(s):  
B. C. Ng ◽  
A. F. Ismail ◽  
W. A. W. Abdul Rahman ◽  
H. Hasbullah ◽  
M. S. Abdullah ◽  
...  

Kajian ini memfokuskan kepada kesan kadar ricih ke atas struktur membran asimetrik polisulfona dan prestasi pemisahan gas. Membran asimetrik kepingan rata dibentukkan dengan mengunakan satu larutan pertigaan yang optima. Membran asimetrik yang mempunyai lapisan kulit bermolekul terhala disediakan melalui satu teknik fasa balikan kering/basah yang ringkas bersertakan olakan paksaan menggunakan sistem tuangan kawalan Pneumatik yang baru dibangunkan. Ujikaji yang dijalankan juga menumpukan kepada perbezaan kelajuan tuangan yang mewakili keadaan reologi yang berlainan. Kelajuan tuangan dibezakan dari 5 saat hingga ke 60 saat, diketahui bahawa pengubahan kelajuan tuangan boleh mengubah kadar ricihan. Halaan molekul teraruh secara reologi atas lapisan kulit membran diukur menggunakan spektroskopi jumlah pantulan terkecil jelmaan fourier (ATR–FTIR) untuk menguji sama ada kadar ricih yang tinggi berupaya mempengaruhkan tak isotropi peringkat molekul pada membran. Keputusan reologikal ini juga dikaitkan kepada prestasi pemisahan gas dengan 4 jenis gas tulen yang berlainan. Keputusan menunjukkan bahawa membran asimetrik ricihan tinggi cenderung mempamerkan penghalaan molekul yang lebih ketara dalam lapisan kulit. Dengan peningkatan kelajuan, kadar ricihan pada lapisan permukaan membran juga ditingkatkan. Keadaan ini telah menyebabkan peningkatan penghalaan molekul yang lebih ketara dalam lapisan kulit. Oleh sebab itu, kememilihan gas O2/N2 and CO2/CH4 dipertingkatkan dengan peningkatan kadar ricih dan lebih ketara dibandingkan dengan nilai kememilihan hakiki. Kata kunci: Polisulfona, membran asimmetrik, pemisahan gas, reologi, kadar ricih This study was focused on the effect of shear rate on asymmetric polysulfone membrane structure and gas separation performance. Flat sheet asymmetric membranes were formed using an optimized ternary casting solution. The asymmetric membranes with the molecular–oriented skin layer were prepared by a simple dry/wet phase inversion technique with forced convection using a newly developed Pneumatically–controlled casting system. Experimental investigation was conducted focusing on different casting speed, thus representing different rheological conditions. Casting speed was varied from 5s to 60s, as known that varying casting speed would vary shear rate. Rheologically induced molecular orientation on the skin layer of membrane was measured using fourier transform attenuated total reflection spectroscopy (ATR–FTIR) to examine whether higher shear rate may induce anisotropy at the molecular level of the membrane. These rheological results were then correlated to the gas separation performance in four different pure gases. The results indicated that the highly sheared asymmetric membranes tend to exhibit greater molecular orientation in the skin layer. As the casting speed increased, the level of shear experienced on the membrane surface layer also increased, thus this was leading to greater molecular orientation in the skin layer. Hence, the gas selectivities of O2/N2 and CO2/CH4 significantly increase with an increase in the shear rate and were greater than that of the recognized intrinsic value. Key words: Polysulfone, asymmetric membrane, gas separation, rheological, shear rate


Author(s):  
Sunarti Abd Rahman ◽  
Gamal Abdalla Suliman Haron ◽  
Raj Krishna Roshan Kanasan ◽  
Hasrinah Hasbullah

2021 ◽  
Author(s):  
Justin Caspar ◽  
Guanyang Xue ◽  
Robert Krysko ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations were conducted to evaluate the effect of a wavy channel in a two-dimensional vacuum membrane distillation module. The curvature was induced using a sinusoidal profile along the membrane and bottom wall. Contour plots and line profiles provide a detailed view of the flow structure and the effect of the proposed configuration on the flux performance. Module averaged temperatures, concentrations, and flux values were calculated for two selected Reynolds numbers. Results indicate that at low Reynolds numbers, the wiggly module performs worse than the flat sheet module. Due to the channel’s curvature changing the direction of the bulk flow and the absence of secondary flows to promote mixing, the thermal boundary layer along the membrane surface can be more intense versus a flat sheet membrane, causing more intense temperature polarization and reduced flux performance. At Reynolds number 500, there was a 5% decrease in the flux for the curved versus flat case. However, in some curved channel areas, the local performance was superior to the flat channel. Increasing the Reynolds number could aid the performance of the wiggly channel immensely.


Sign in / Sign up

Export Citation Format

Share Document