Dynamic stress concentration of an elliptical cavity in a semi-elliptical hill under SH-waves

2021 ◽  
Vol 20 (2) ◽  
pp. 347-359
Author(s):  
Qi Hui ◽  
Chu Fuqing ◽  
Guo Jing
2010 ◽  
Vol 452-453 ◽  
pp. 677-680
Author(s):  
Hong Liang Li ◽  
Hong Li

Multiple circular inclusions exists widely in natural media, engineering materials and modern municipal construction, and defects are usually found around the inclusions. When composite material with multiple circular inclusions and a crack is impacted by dynamic load, the scattering field will be produced. The problem of scattering of SH waves by multiple circular inclusions and a linear crack is one of the important and interesting questions in mechanical engineering and civil engineering for the latest decade. It is hard to obtain analytic solutions except for several simple conditions. In this paper, the method of Green’s function is used to investigate the problem of dynamic stress concentration of multiple circular inclusions and a linear crack for incident SH wave. The train of thoughts for this problem is that: Firstly, a Green’s function is constructed for the problem, which is a fundamental solution of displacement field for an elastic space possessing multiple circular inclusions while bearing out-of-plane harmonic line source force at any point: Secondly, in terms of the solution of SH-wave’s scattering by an elastic space with multiple circular inclusions, anti-plane stresses which are the same in quantity but opposite in direction to those mentioned before, are loaded at the region where the crack is in existent actually; Finally, the expressions of the displacement and stress are given when multiple circular inclusions and a linear crack exist at the same time. Then, by using the expression, an example is provided to show the effect of multiple circular inclusions and crack on the dynamic stress concentration.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3441 ◽  
Author(s):  
Ming Tao ◽  
Ao Ma ◽  
Kang Peng ◽  
Yiqing Wang ◽  
Kun Du

The Split-Hopkinson pressure bar (SHPB) was used to determine the fracture characteristics of a long bar rock specimen with an elliptical cavity under different axial ratios and dip angles. A high speed camera was applied to record the fracturing process of the granite specimen around the cavity. The experimental results showed that the fracture characteristics around the elliptical cavity were closely related to the axial ratio and dip angle. A three-dimensional numerical model was established using LS-DYNA to quantitatively analyze the dynamic stress state around the cavity. The numerical results indicate that the dip angle and axial ratio of the elliptical cavity significantly affected the dynamic stress concentration factor (DSCF), then affected the rock failure. The location of higher DSCF led to a higher possibility of spalling failure. The maximum DSCF remarkably decreased with a decreasing dip angle and increased the axial ratio. In the dynamic loading propagate process, the stress concentration distribution around the cavity formed by a compression stress wave had a certain damaging effect on the destruction of rock around the cavity, and the stress concentration generated by the tensile stress wave was the main factor of the rock fracture, which was most notable in the peak area of the stress concentration.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hui Qi ◽  
Yang Zhang ◽  
Fuqing Chu ◽  
Jing Guo

This article presents analytical solutions to the problem of dynamic stress concentration and the surface displacement of a partially debonded cylindrical inclusion in the covering layer under the action of a steady-state horizontally polarized shear wave (SH wave); these solutions are using the complex function method and wave function expansion method. By applying the large-arc assumption method, the straight line boundary of the half-space covering layer is transformed into a curved boundary. The wave field of the debonded inclusion is constructed utilizing a Fourier series and boundary conditions of continuity. The impact of debonding upon the dynamic stress concentration and surface displacement around the cylindrical concrete or steel inclusion is analyzed through numerical examples of the SH waves that are incident at normal angles, from a harder medium to a softer medium and from a softer medium to a harder medium. The examples show that various factors (including the medium parameters of the soil layers and the inclusion, the frequency of the incident waves, and the debonding situations) jointly affect the dynamic stress concentration factor and the surface displacement around the structure.


Author(s):  
Xiaotang Lv ◽  
Cuiling Ma ◽  
Meixiang Fang

This paper provides a dynamic analysis of the response of a subsurface cylindrical tunnel to SH waves influenced by a neighboring semi-cylindrical hill and semi-cylindrical canyon in half-space using complex functions. For convenience in finding a solution, the half-space is divided into two parts and the scattered wave functions are constructed in both parts. Then the mixed boundary conditions are satisfied by moving coordinates. Finally, the problem is reduced to solving a set of infinite linear algebraic equations, for which the unknown coefficients are obtained by truncation of the infinite set of equations. The effects of the incident angles and frequencies of SH waves, as well as of the radius of the tunnel, hill, and canyon on the dynamic stress concentration of the tunnel are studied. The results show that the hill and canyon have a significant effect on the dynamic stress concentration of the tunnel.


1995 ◽  
Vol 111 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
H. G. Georgiadis ◽  
A. P. Rigatos ◽  
N. C. Charalambakis

Sign in / Sign up

Export Citation Format

Share Document