Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

2014 ◽  
Vol 31 (6) ◽  
pp. 1016-1020 ◽  
Author(s):  
Ali Akbar Amooey ◽  
Shahram Ghasemi ◽  
Seyed Mohammad Mirsoleimani-azizi ◽  
Zohreh Gholaminezhad ◽  
Mohammad Javad Chaichi
Desalination ◽  
2011 ◽  
Vol 279 (1-3) ◽  
pp. 121-126 ◽  
Author(s):  
Ashraf Shafaei ◽  
Elmira Pajootan ◽  
Manouchehr Nikazar ◽  
Mokhtar Arami

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Ferniza-García ◽  
Araceli Amaya-Chávez ◽  
Gabriela Roa-Morales ◽  
Carlos E. Barrera-Díaz

This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Edris Bazrafshan ◽  
Hossein Moein ◽  
Ferdos Kord Mostafapour ◽  
Shima Nakhaie

Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.


Author(s):  
Abideen Idowu Adeogun ◽  
Ramesh Babu Balakrishnan

<span lang="EN-US">Electrocoagulation (EC) was used for the removal of anthraquinone dye, Alizarin Red S (ARS) from aqueous solution, the process was carried out in a batch electrochemical cell with Al electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process were investigated. Equilibrium was attained after 10 minutes at 30 oC. Pseudo-first-order, pseudo-second-order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic of the electrocoagulation process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analyzed using six isotherm models: Langmuir, Freudlinch, Redlich–Peterson, Temkin, Dubinin–Radushkevich and Sips isotherms and it was found that the data fitted well with Dubinin–Radushkevich and Sips isotherm model. The study showed that the process depend on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (∆G<sup>o</sup>, ∆H<sup>o</sup> and ∆S<sup>o</sup>) indicated that the process is spontaneous and endothermic in nature.</span>


2017 ◽  
Vol 87 ◽  
pp. 314-325
Author(s):  
Rojan Akhbarati ◽  
Elham Keshmirizadeh ◽  
Hamid Modarress

2008 ◽  
Vol 150 (1) ◽  
pp. 124-135 ◽  
Author(s):  
G. Mouedhen ◽  
M. Feki ◽  
M. De Petris Wery ◽  
H.F. Ayedi

Sign in / Sign up

Export Citation Format

Share Document