Rhizospheric Pseudomonas spp. with plant growth promotion and antifungal properties against Sclerotium rolfsii mediated pathogenesis in Vigna unguiculata

Author(s):  
P Jishma ◽  
K Shibil Shad ◽  
EC Athulya ◽  
P Sachidanandan ◽  
EK Radhakrishnan
2020 ◽  
Vol 66 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Shrivardhan Dheeman ◽  
Nitin Baliyan ◽  
Ramesh Chandra Dubey ◽  
Dinesh Kumar Maheshwari ◽  
Sandeep Kumar ◽  
...  

This study emphasizes the beneficial role of rhizo-competitive Bacillus spp. isolated from rhizospheric and non-rhizospheric soil in plant growth promotion and yield improvement via nitrogen fixation and biocontrol of Sclerotium rolfsii causing foot rot disease in Eleusine coracana (Ragi). The selection of potent rhizobacteria was based on plant-growth-promoting attributes using Venn set diagram and Bonitur scale. Bacillus pumilus MSTA8 and Bacillus amyloliquefaciens MSTD26 were selected because they were effective in root colonization, rhizosphere competence, and biofilm formation using root exudates of E. coracana L. rich with carbohydrates, proteins, and amino acids. The relative chemotaxis index of the isolates expressed the invasive behavior of the rhizosphere. During pot and field trials, the consortium of the rhizobacteria in a vermiculite carrier increased the grain yield by 37.87%, with a significant harvest index of 16.45. Soil analysis after the field trial revealed soil reclamation potentials to manage soil nutrition and fertility. Both indexes ensured crop protection and production in eco-safe ways and herald commercialization of Bacillus bio-inoculant for improvement in crop production and disease management of E. coracana.


2017 ◽  
Vol 4 (4) ◽  
pp. 464-469
Author(s):  
Sampada Mishra ◽  
Saroj Kumar Mahato ◽  
Sabin Basi ◽  
Shradha Basi-Chipalu

Minimization of deleterious effects of chemical fertilizers on health, ecosystem and economy can only be achieved by finding healthy, eco-friendly and cheap alternatives. Naturally selected symbiotic relationship between the endophytic bacteria and their host plants makes them an ideal candidate as biofertilizer. They can synthesize various plant growth hormones as well as assist their host in uptake of nutrients from soil.The study was designed to compare plant growth promotion of Solanum lycopersicum by Bacillus spp., Pseudomonas spp. and total endophytic community isolated from roots of S. lycopersicum, grown in the soil samples collected from various locations of Kathmandu valley of Nepal. Tomato seeds were inoculated with mixtures of eight endophytic strains of Bacillus spp. and Pseudomonas spp., and crude endophytes obtained from each location separately.Endophytic treatments, except Pseudomonas spp., inhibited seminal root growth during 12-days germination period. However, after plantation, root and shoot biomass was enhanced by the endophytes, with no significant differences among the bacterial treatments. The shoot height was also enhanced, among which Pseudomonas spp. had the strongest effect. In phosphate solubilization assay, out of seventy-two isolates each of Bacillus spp. and Pseudomonas spp. tested, twenty-four isolates of Pseudomonas spp. and sixteen isolates of Bacillus spp. could solubilize phosphate. Higher number of phosphate solubilizing isolates of Pseudomonas spp. might provide a possible explanation for the greater enhancement of shoot height by Pseudomonas spp. as compared to Bacillus spp.Int J Appl Sci Biotechnol, Vol 4(4): 464-469


2012 ◽  
Vol 67 (2) ◽  
pp. 133-140 ◽  
Author(s):  
G. Praveen Kumar ◽  
N. Kishore ◽  
E. Leo Daniel Amalraj ◽  
S. K. Mir Hassan Ahmed ◽  
Abdul Rasul ◽  
...  

2004 ◽  
Vol 94 (11) ◽  
pp. 1259-1266 ◽  
Author(s):  
Joseph W. Kloepper ◽  
Choong-Min Ryu ◽  
Shouan Zhang

Elicitation of induced systemic resistance (ISR) by plant-associated bacteria was initially demonstrated using Pseudomonas spp. and other gram-negative bacteria. Several reviews have summarized various aspects of the large volume of literature on Pseudomonas spp. as elicitors of ISR. Fewer published accounts of ISR by Bacillus spp. are available, and we review this literature for the first time. Published results are summarized showing that specific strains of the species B. amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts. Elicitation of ISR by these strains has been demonstrated in greenhouse or field trials on tomato, bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucumber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang futsoi). Protection resulting from ISR elicited by Bacillus spp. has been reported against leaf-spotting fungal and bacterial pathogens, systemic viruses, a crown-rotting fungal pathogen, root-knot nematodes, and a stem-blight fungal pathogen as well as damping-off, blue mold, and late blight diseases. Reductions in populations of three insect vectors have also been noted in the field: striped and spotted cucumber beetles that transmit cucurbit wilt disease and the silver leaf whitefly that transmits Tomato mottle virus. In most cases, Bacillus spp. that elicit ISR also elicit plant growth promotion. Studies on mechanisms indicate that elicitation of ISR by Bacillus spp. is associated with ultrastructural changes in plants during pathogen attack and with cytochemical alterations. Investigations into the signal transduction pathways of elicited plants suggest that Bacillus spp. activate some of the same pathways as Pseudomonas spp. and some additional pathways. For example, ISR elicited by several strains of Bacillus spp. is independent of salicylic acid but dependent on jasmonic acid, ethylene, and the regulatory gene NPR1—results that are in agreement with the model for ISR elicited by Pseudomonas spp. However, in other cases, ISR elicited by Bacillus spp. is dependent on salicylic acid and independent of jasmonic acid and NPR1. In addition, while ISR by Pseudomonas spp. does not lead to accumulation of the defense gene PR1 in plants, in some cases, ISR by Bacillus spp. does. Based on the strains and results summarized in this review, two products for commercial agriculture have been developed, one aimed mainly at plant growth promotion for transplanted vegetables and one, which has received registration from the U.S. Environmental Protection Agency, for disease protection on soybean.


2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


Sign in / Sign up

Export Citation Format

Share Document