A Single-Step Process for Direct Reduction of Iron Oxide to Sponge Iron by Undiluted Methane

JOM ◽  
2017 ◽  
Vol 69 (6) ◽  
pp. 993-998 ◽  
Author(s):  
S. Cetinkaya ◽  
S. Eroglu
2013 ◽  
Vol 53 (10) ◽  
pp. 1763-1769 ◽  
Author(s):  
Taichi Murakami ◽  
Takeshi Nishimura ◽  
Naohiro Tsuda ◽  
Eiki Kasai

2016 ◽  
Vol 6 (5) ◽  
pp. 1158-1161
Author(s):  
B. Abrar ◽  
M. Halali ◽  
A. Pourfathi

In the process of direct reduction of iron pellet and production of sponge iron, NiO/Al2O3 act as a catalyst for the generation of carbon monoxide and hydrogen by vapor and natural gas. As an expensive material used in MIDREX method for steel units, this type of catalyst has major environmental problems after accumulation. The steel industry in Iran hopes to employ the MIDREX technique for the 80 percent of the 50 million tons of steel. Thus, the problem of spent catalysts will become a serious environmental challenge. Through the hydrometallurgy method, the present study investigates a possible solution to the problem of catalyst depot (due to heavy metals such as nickel) via nickel recovery, which may increase the possibility of selling or re-using the precious and expensive metal. The present research studied the Nickel recovery from spent catalysts of NiO/Al2O¬3 used in reduction gas reliefs of the production of sponge iron unit. In this study, the parameters of temperature, concentration, time and Rpm were studied using pressurized dissolving method. 100% efficiency was achieved at 140 °C for 120 minutes, nitric acid concentration of 1.5 mm, Rpm of 600 and 40 s/l 40 grams per liter.


2018 ◽  
Vol 42 (3) ◽  
pp. 453-466
Author(s):  
Wei WANG ◽  
Pengfei YE ◽  
Xiaoli ZHOU ◽  
C WANG ◽  
Zekun HUO ◽  
...  

2010 ◽  
Vol 107 (5) ◽  
pp. 195-204 ◽  
Author(s):  
M. Vannucci ◽  
V. Colla ◽  
G. Corbo ◽  
S. Fera

2003 ◽  
Vol 67 (23) ◽  
pp. 4489-4503 ◽  
Author(s):  
Andrew L. Neal ◽  
Kevin M. Rosso ◽  
Gill G. Geesey ◽  
Yuri A. Gorby ◽  
Brenda J. Little

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 751 ◽  
Author(s):  
Zhiyuan Chen ◽  
Jie Dang ◽  
Xiaojun Hu ◽  
Hongyan Yan

Hydrogen has received much attention in the development of direct reduction of iron ores because hydrogen metallurgy is one of the effective methods to reduce CO2 emission in the iron and steel industry. In this study, the kinetic mechanism of reduction of hematite particles was studied in a hydrogen atmosphere. The phases and morphological transformation of hematite during the reduction were characterized using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. It was found that porous magnetite was formed, and the particles were degraded during the reduction. Finally, sintering of the reduced iron and wüstite retarded the reductive progress. The average activation energy was extracted to be 86.1 kJ/mol and 79.1 kJ/mol according to Flynn-Wall-Ozawa (FWO) and Starink methods, respectively. The reaction fraction dependent values of activation energy were suggested to be the result of multi-stage reactions during the reduction process. Furthermore, the variation of activation energy value was smoothed after heat treatment of hematite particles.


Sign in / Sign up

Export Citation Format

Share Document