scholarly journals Deformation Resistance and Recrystallization of Commercially Pure Titanium in the High Strain Rate Hot Deformation

1986 ◽  
Vol 72 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Takehide SENUMA ◽  
Hiroshi YADA ◽  
Hirobumi YOSHIMURA ◽  
Hisaaki HARADA ◽  
Takuji SHINDO ◽  
...  
2014 ◽  
Vol 626 ◽  
pp. 553-560
Author(s):  
Shi Rong Chen ◽  
Chung Yung Wu ◽  
Yi Liang Ou ◽  
Yen Liang Yeh

Axisymmetric compression tests using Gleeble 3800 simulator were carried out to investigate hot deformation behaviors of an AA5083 alloy under high strain rate conditions. Sharp temperature rise and load cell ringing characterized by severely vibrational load responses were encountered at strain rates higher than 20 s-1 and sample buckling occurred at low temperatures. The load cell ringing was corrected using a moving average method with a two-way filtering operation to correct phase distortion. Isothermal flow curves were obtained by fitting the instantaneous temperatures into a binomial function, while buckling was correlated with sample height and Young’s modulus. After the corrections, hyperbolic sine equation was successfully used to extend from the hot tensile data having strain rates lower than 3 s-1 to 100 s-1. Quantitative analyses were accordingly made over the effects of temperature, strain rate and work hardening behavior on the flow curves. The previous constitutive equation in form of temperature, strain and strain rate was modified to predict the hot deformation resistance of the AA5083 alloy at temperatures of 250-450oC under the high strain rate operations.


2004 ◽  
Vol 43 (10) ◽  
pp. 7192-7199 ◽  
Author(s):  
Fumikazu Saito ◽  
Kensuke Fujihata ◽  
Takuyasu Hashiguchi ◽  
Toshitika Usui ◽  
Hideki Tamura

Author(s):  
Mark E. Barkey ◽  
Haleigh Ball ◽  
Stanley E. Jones ◽  
Pingsha Dong

High strain rate mechanical properties of this material are required for the structural design of ship components for advanced naval applications. Taylor cylinder specimens were machined from pure titanium plate stock proposed for use in ship building. Since the specimens were machined from plate stock, it was assumed that the processing of the plate induced anisotropic behavior. To assure that all the effects would be captured by the tests, specimens were machined in the rolling direction, transverse direction, and 45° to the rolling direction in the plane of the plate. Indeed, distinct differences were observed in the rolling and transverse directions. Specimens in the 45° direction also showed the unsymmetrical deformation field that is associated with anisotropy. There was modest anisotropy in the thickness direction. However, the analysis of the data from the tests required corrections to accommodate this effect. Data from these tests can be reduced using two distinct methods; a one-dimensional theory and a finite element analysis with a conventional constitutive model adjusting the free parameters until the specimen geometry is matched. While the second method usually produces excellent results, we will employ a one-dimensional analysis that was proposed several years ago by one of the authors in this paper. In order to effectively apply such a theory, very low scale specimens, in this case 0.164-inch diameter, are required. The use of such low diameter specimens demands accurate measurement of the specimen profile. The recovered specimens were measured with a laser micrometer and the results were used to find estimates of quasi-static compressive stress and compressive stress at strain rates exceeding 104/sec. Some scatter in the data from these tests was observed. This was mostly due to some variations in the initial specimen diameter. Pure titanium presents a machining challenge for conventional equipment, when a tolerance of a thousandth of an inch is required. The scatter in Taylor cylinder data can be mitigated by conducting a large number of tests. However, in this case, many of the specimens that did not meet the criteria for success were discarded. Nevertheless, the results are very convincing.


2011 ◽  
Vol 213 ◽  
pp. 116-120
Author(s):  
Ke Zhun He ◽  
Fu Xiao Yu ◽  
Da Zhi Zhao ◽  
Liang Zuo

The hot deformation behavior of DC cast phosphorous modified and unmodified hypereutectic Al-Si alloys was studied in the temperature range of 400-500 °C and strain rate range of 0.001-1 s-1. Processing maps were developed to evaluate the efficiency of the hot deformation and to identify the instability region. The results show that the peak stresses of the unmodified alloy are higher than that of the modified alloy at the strain rate of 1 s-1 and temperatures of 400 and 440 °C. The maximum power dissipation efficiencies for both the alloys are in the region of T=480-500 °C and =0.01-0.1 s-1. The flow instabilities for both the alloys occur in regions of high strain rate about 1 s-1 and temperature about 400 and 500 °C. The instability region area of the unmodified alloy is larger than that of the modified alloy. In addition, the primary Si cracking frequencies of the unmodified alloy are higher than that of the modified alloy when compared at the same deformation rate and temperature. The coarser primary Si particles of the unmodified alloy cause higher stress concentration around them when deformed at low temperature and high strain rate.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1587
Author(s):  
Yang Yang ◽  
Xian-Ming Zhao ◽  
Chun-Yu Dong ◽  
Xiao-Yu Zhao

Nb, V, and Ti were added to free-cutting steel to improve its mechanical properties by means of precipitation strengthening and fine grain strengthening. The process parameters during the hot deformation of Nb-V-Ti free-cutting steel were studied at strain rates of 0.01–10 s−1 and temperatures of 850–1250 °C. The isothermal compression test results showed that the temperature rise at low deformation temperature and high strain rate has a great influence on the softening of the steel. The processing maps at strains of 0.3–0.6 were established based on a dynamic material model (DMM). When the strain was 0.6, the optimum hot-working window was at a temperature in the range of 1150–1250 °C and at a strain rate in the range of 0.01–0.1 s−1. The instable regions were mainly located at low temperature and high strain rate. The instable characteristics included the mixed grains around the MnS phase, flow localization, and intense deformation. In general, the existence of MnS leads to a decrease in the toughness of the steel. The MnS phase was easy to be broken when the compression tested at a lower temperature, e.g., 850 °C and at a higher strain rate, e.g., 10 s−1; its morphology changed from a long-rod shape to a discontinuous shape, and then, to a dot-like shape with the decrease in temperature from 1250 to 850 °C and the increase in strain rate from 0.01 to 10 s−1. The nucleation mechanism of this steel was grain boundary bulging. The size of fine (Nb,Ti) (C,N) precipitates is less than 10 nm, inhibiting austenite recrystallization and leading to austenite strengthening during hot deformation at 850 °C. Moreover, the dislocation motion and grain boundary migration were greatly inhibited by the Ti-rich(C,N) and MnS throughout the entire hot deformation process.


Sign in / Sign up

Export Citation Format

Share Document