Production and Characterization of an Antifungal Compound (3-Phenyllactic Acid) Produced by Lactobacillus plantarum Strain

2008 ◽  
Vol 3 (3) ◽  
pp. 379-386 ◽  
Author(s):  
P. Prema ◽  
D. Smila ◽  
A. Palavesam ◽  
G. Immanuel
2011 ◽  
Vol 74 (4) ◽  
pp. 651-657 ◽  
Author(s):  
E. J. YANG ◽  
Y.-S. KIM ◽  
H. C. CHANG

The aim of this study was to purify and identify an antifungal compound from Lactobacillus plantarum AF1, which was isolated from kimchi. The antifungal compound was purified by solid-phase extraction and recycling preparative high-performance liquid chromatography, and its structure was elucidated by using gas chromatography–mass spectrometry (GC-MS). The active compound from L. plantarum AF1 was confirmed to be δ-dodecalactone (molecular weight, 198.3) by comparison of its gas chromatographic retention time with the mass spectrum of standard δ-dodecalactone. The MICs of δ-dodecalactone against various fungi and bacteria ranged from 350 to 6,250 μg/ml. δ-Dodecalactone showed strong antifungal activity against molds Aspergillus flavus, A. fumigatus, A. petrakii, A. ochraceus, A. nidulans, and Penicillium roqueforti. The three tested yeast strains of Candida albicans were more resistant than the molds. Antibacterial activity was evident but less potent than the antifungal activity. δ-Dodecalactone produced pleasurable (fruity) organoleptic characteristics. The results indicate the potential of the δ-dodecalactone produced by L. plantarum AF1 as a biopreservative and flavoring compound, as well as a biosafe remedy for candidiasis.


Gene ◽  
1998 ◽  
Vol 215 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Makiko Kakikawa ◽  
Nobukatsu Watanabe ◽  
Tatsuya Funawatashi ◽  
Masaya Oki ◽  
Hiroo Yasukawa ◽  
...  

2010 ◽  
Vol 150 ◽  
pp. 320-320 ◽  
Author(s):  
Noelia Rodríguez ◽  
Jose Manuel Salgado ◽  
Belén Max ◽  
Sandra Cortés ◽  
Jose Manuel Domínguez

2017 ◽  
Vol 246 ◽  
pp. 32-39 ◽  
Author(s):  
Susana Delgado ◽  
Ana Belén Flórez ◽  
Lucía Guadamuro ◽  
Baltasar Mayo

2012 ◽  
Vol 78 (24) ◽  
pp. 8719-8734 ◽  
Author(s):  
Mariángeles Briggiler Marcó ◽  
Josiane E. Garneau ◽  
Denise Tremblay ◽  
Andrea Quiberoni ◽  
Sylvain Moineau

ABSTRACTWe characterized twoLactobacillus plantarumvirulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eightL. plantarumstrains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least twoL. plantarumstrains, LMG9211 and WCSF1. The linear double-stranded DNA genome of thepac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that ofPediococcus damnosusphage clP1 and 77% identity with that ofL. plantarumphage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of thecos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those ofBacillusandLactobacillusstrains as well as phages. Some phage B2 genes were similar to ORFs fromL. plantarumphage LP65 of theMyoviridaefamily. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document