scholarly journals Identification of Neuronal Polarity by Node-Based Machine Learning

2021 ◽  
Author(s):  
Chen-Zhi Su ◽  
Kuan-Ting Chou ◽  
Hsuan-Pei Huang ◽  
Chiau-Jou Li ◽  
Ching-Che Charng ◽  
...  

AbstractIdentifying the direction of signal flows in neural networks is important for understanding the intricate information dynamics of a living brain. Using a dataset of 213 projection neurons distributed in more than 15 neuropils of a Drosophila brain, we develop a powerful machine learning algorithm: node-based polarity identifier of neurons (NPIN). The proposed model is trained only by information specific to nodes, the branch points on the skeleton, and includes both Soma Features (which contain spatial information from a given node to a soma) and Local Features (which contain morphological information of a given node). After including the spatial correlations between nodal polarities, our NPIN provided extremely high accuracy (>96.0%) for the classification of neuronal polarity, even for complex neurons with more than two dendrite/axon clusters. Finally, we further apply NPIN to classify the neuronal polarity of neurons in other species (Blowfly and Moth), which have much less neuronal data available. Our results demonstrate the potential of NPIN as a powerful tool to identify the neuronal polarity of insects and to map out the signal flows in the brain’s neural networks if more training data become available in the future.

2020 ◽  
Author(s):  
Chen-Zhi Su ◽  
Kuan-Ting Chou ◽  
Hsuan-Pei Huang ◽  
Chung-Chuan Lo ◽  
Daw-Wei Wang

AbstractIdentifying the directions of signal flows in neural networks is one of the most important stages for understanding the intricate information dynamics of a living brain. Using a dataset of 213 projection neurons distributed in different regions of a Drosophila brain, we develop a powerful machine learning algorithm: node-based polarity identifier of neurons (NPIN). The proposed model is trained by nodal information only and includes both Soma Features (which contain spatial information from a given node to a soma) and Local Features (which contain morphological information of a given node). After including the spatial correlations between nodal polarities, our NPIN provided extremely high accuracy (>96.0%) for the classification of neuronal polarity, even for complex neurons with more than two dendrite/axon clusters. Finally, we further apply NPIN to classify the neuronal polarity of the blowfly, which has much less neuronal data available. Our results demonstrate that NPIN is a powerful tool to identify the neuronal polarity of insects and to map out the signal flows in the brain’s neural networks.Availability of data and materialThe FlyCircuit database (http://www.flycircuit.tw/) is provided by the National Center for High-Performance Computing.Code availabilityWe provide an online version of NPIN to be used or tested by other research groups at the following address: https://npin-for-drosophila.herokuapp.com/


Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Chao Zhang ◽  
Mirko van der Baan

Neural networks hold substantial promise to automate various processing and interpretation tasks. Yet their performance is often sub-optimal compared with standard but more closely guided approaches. Lack of performance is often attributed to poor generalization, in particular if fewer training examples are provided than free parameters exist in the machine learning algorithm. In this case the training data are typically memorized instead of the algorithm learning the underlying general trends. Network generalization is improved if the provided samples are representative, in that they describe all features of interest well. We argue that a more subtle condition preventing poor performance is that the provided examples must also be complete; the examples must span the full solution space. Ensuring completeness during training is challenging unless the target application is well understood. We illustrate that one possible solution is to make the problem more general if this greatly increases the number of available training data. For instance, if seismic images are treated as a subclass of natural images, then a deep-learning-based denoiser for seismic data can be trained using exclusively natural images. The latter are widely available. The resulting denoising algorithm has never seen any seismic data during the training stage; yet it displays a performance comparable to standard and advanced random-noise reduction methods. We exclude any seismic data during training to demonstrate the natural images are both complete and representative for this specific task. Furthermore, we apply a novel approach to increase the amount of training data known as double noise injection, providing both noisy input and output images during the training process. Given the importance of network generalization, we hope that insights gained in this study may help improve the performance of a range of machine learning applications in geophysics.


2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


2018 ◽  
Vol 8 (12) ◽  
pp. 2416 ◽  
Author(s):  
Ansi Zhang ◽  
Honglei Wang ◽  
Shaobo Li ◽  
Yuxin Cui ◽  
Zhonghao Liu ◽  
...  

Prognostics, such as remaining useful life (RUL) prediction, is a crucial task in condition-based maintenance. A major challenge in data-driven prognostics is the difficulty of obtaining a sufficient number of samples of failure progression. However, for traditional machine learning methods and deep neural networks, enough training data is a prerequisite to train good prediction models. In this work, we proposed a transfer learning algorithm based on Bi-directional Long Short-Term Memory (BLSTM) recurrent neural networks for RUL estimation, in which the models can be first trained on different but related datasets and then fine-tuned by the target dataset. Extensive experimental results show that transfer learning can in general improve the prediction models on the dataset with a small number of samples. There is one exception that when transferring from multi-type operating conditions to single operating conditions, transfer learning led to a worse result.


2020 ◽  
pp. 609-623
Author(s):  
Arun Kumar Beerala ◽  
Gobinath R. ◽  
Shyamala G. ◽  
Siribommala Manvitha

Water is the most valuable natural resource for all living things and the ecosystem. The quality of groundwater is changed due to change in ecosystem, industrialisation, and urbanisation, etc. In the study, 60 samples were taken and analysed for various physio-chemical parameters. The sampling locations were located using global positioning system (GPS) and were taken for two consecutive years for two different seasons, monsoon (Nov-Dec) and post-monsoon (Jan-Mar). In 2016-2017 and 2017-2018 pH, EC, and TDS were obtained in the field. Hardness and Chloride are determined using titration method. Nitrate and Sulphate were determined using Spectrophotometer. Machine learning techniques were used to train the data set and to predict the unknown values. The dominant elements of groundwater are as follows: Ca2, Mg2 for cation and Cl-, SO42, NO3− for anions. The regression value for the training data set was found to be 0.90596, and for the entire network, it was found to be 0.81729. The best performance was observed as 0.0022605 at epoch 223.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


Author(s):  
Kazuko Fuchi ◽  
Eric M. Wolf ◽  
David S. Makhija ◽  
Nathan A. Wukie ◽  
Christopher R. Schrock ◽  
...  

Abstract A machine learning algorithm that performs multifidelity domain decomposition is introduced. While the design of complex systems can be facilitated by numerical simulations, the determination of appropriate physics couplings and levels of model fidelity can be challenging. The proposed method automatically divides the computational domain into subregions and assigns required fidelity level, using a small number of high fidelity simulations to generate training data and low fidelity solutions as input data. Unsupervised and supervised machine learning algorithms are used to correlate features from low fidelity solutions to fidelity assignment. The effectiveness of the method is demonstrated in a problem of viscous fluid flow around a cylinder at Re ≈ 20. Ling et al. built physics-informed invariance and symmetry properties into machine learning models and demonstrated improved model generalizability. Along these lines, we avoid using problem dependent features such as coordinates of sample points, object geometry or flow conditions as explicit inputs to the machine learning model. Use of pointwise flow features generates large data sets from only one or two high fidelity simulations, and the fidelity predictor model achieved 99.5% accuracy at training points. The trained model was shown to be capable of predicting a fidelity map for a problem with an altered cylinder radius. A significant improvement in the prediction performance was seen when inputs are expanded to include multiscale features that incorporate neighborhood information.


Author(s):  
Amirata Ghorbani ◽  
Abubakar Abid ◽  
James Zou

In order for machine learning to be trusted in many applications, it is critical to be able to reliably explain why the machine learning algorithm makes certain predictions. For this reason, a variety of methods have been developed recently to interpret neural network predictions by providing, for example, feature importance maps. For both scientific robustness and security reasons, it is important to know to what extent can the interpretations be altered by small systematic perturbations to the input data, which might be generated by adversaries or by measurement biases. In this paper, we demonstrate how to generate adversarial perturbations that produce perceptively indistinguishable inputs that are assigned the same predicted label, yet have very different interpretations. We systematically characterize the robustness of interpretations generated by several widely-used feature importance interpretation methods (feature importance maps, integrated gradients, and DeepLIFT) on ImageNet and CIFAR-10. In all cases, our experiments show that systematic perturbations can lead to dramatically different interpretations without changing the label. We extend these results to show that interpretations based on exemplars (e.g. influence functions) are similarly susceptible to adversarial attack. Our analysis of the geometry of the Hessian matrix gives insight on why robustness is a general challenge to current interpretation approaches.


2020 ◽  
pp. practneurol-2020-002688
Author(s):  
Stephen D Auger ◽  
Benjamin M Jacobs ◽  
Ruth Dobson ◽  
Charles R Marshall ◽  
Alastair J Noyce

Modern clinical practice requires the integration and interpretation of ever-expanding volumes of clinical data. There is, therefore, an imperative to develop efficient ways to process and understand these large amounts of data. Neurologists work to understand the function of biological neural networks, but artificial neural networks and other forms of machine learning algorithm are likely to be increasingly encountered in clinical practice. As their use increases, clinicians will need to understand the basic principles and common types of algorithm. We aim to provide a coherent introduction to this jargon-heavy subject and equip neurologists with the tools to understand, critically appraise and apply insights from this burgeoning field.


Sign in / Sign up

Export Citation Format

Share Document