Binding of MmeI Restriction–modification Enzyme to its Specific Recognition Sequence is Stimulated by S-adenosyl-l-methionine

2007 ◽  
Vol 37 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Joanna Nakonieczna ◽  
Jaroslaw W. Zmijewski ◽  
Bogdan Banecki ◽  
Anna J. Podhajska
1993 ◽  
Vol 13 (7) ◽  
pp. 3841-3849
Author(s):  
B Zenzie-Gregory ◽  
A Khachi ◽  
I P Garraway ◽  
S T Smale

Promoters containing Sp1 binding sites and an initiator element but lacking a TATA box direct high levels of accurate transcription initiation by using a mechanism that requires the TATA-binding protein (TBP). We have begun to address the role of TBP during transcription from Sp1-initiator promoters by varying the nucleotide sequence between -14 and -33 relative to the start site. With each of several promoters containing different upstream sequences, we detected accurate transcription both in vitro and in vivo, but the promoter strengths varied widely, particularly with the in vitro assay. The variable promoter activities correlated with, but were not proportional to, the abilities of the upstream sequences to function as TATA boxes, as assessed by multiple criteria. These results confirm that accurate transcription can proceed in the presence of an initiator, regardless of the sequence present in the -30 region. However, the results reveal a role for this upstream region, most consistent with a model in which initiator-mediated transcription requires binding of TBP to the upstream DNA in the absence of a specific recognition sequence. Moreover, in vivo it appears that the promoter strength is modulated less severely by altering the -30 sequence, consistent with a previous suggestion that TBP is not rate limiting in vivo for TATA-less promoters. Taken together, these results suggest that variations in the structure of a core promoter might alter the rate-limiting step for transcription initiation and thereby alter the potential modes of transcriptional regulation, without severely changing the pathway used to assemble a functional preinitiation complex.


2018 ◽  
Vol 84 (23) ◽  
Author(s):  
Ximin Zeng ◽  
Zuowei Wu ◽  
Qijing Zhang ◽  
Jun Lin

ABSTRACTConjugation is an important mechanism for horizontal gene transfer inCampylobacter jejuni, the leading cause of human bacterial gastroenteritis in developed countries. However, to date, the factors that significantly influence conjugation efficiency inCampylobacterspp. are still largely unknown. Given that multiple recombinant loci could independently occur within one recipient cell during natural transformation, the genetic materials from a high-frequency conjugation (HFC)C. jejunistrain may be cotransformed with a selection marker into a low-frequency conjugation (LFC) recipient strain, creating new HFC transformants suitable for the identification of conjugation factors using a comparative genomics approach. To test this, an erythromycin resistance selection marker was created in an HFCC. jejunistrain; subsequently, the DNA of this strain was naturally transformed into NCTC 11168, an LFCC. jejunistrain, leading to the isolation of NCTC 11168-derived HFC transformants. Whole-genome sequencing analysis and subsequent site-directed mutagenesis identified Cj1051c, a putative restriction-modification enzyme (akaCjeI) that could drastically reduce the conjugation efficiency of NCTC 11168 (>5,000-fold). Chromosomal complementation of three diverse HFCC. jejunistrains with CjeI also led to a dramatic reduction in conjugation efficiency (∼1,000-fold). The purified recombinant CjeI could effectively digest theEscherichia coli-derived shuttle vector pRY107. The endonuclease activity of CjeI was abolished upon short heat shock treatment at 50°C, which is consistent with our previous observation that heat shock enhanced conjugation efficiency inC. jejuni. Together, in this study, we successfully developed and utilized a unique cotransformation strategy to identify a restriction-modification enzyme that significantly influences conjugation efficiency inC. jejuni.IMPORTANCEConjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance.Campylobacter jejuni, the leading foodborne bacterial organism, displays significant strain diversity due to horizontal gene transfer; however, the molecular components influencing conjugation efficiency inC. jejuniare still largely unknown. In this study, we developed a cotransformation strategy for comparative genomics analysis and successfully identified a restriction-modification enzyme that significantly influences conjugation efficiency inC. jejuni. The new cotransformation strategy developed in this study is also expected to be broadly applied in other naturally competent bacteria for functional comparative genomics research.


2005 ◽  
Vol 187 (19) ◽  
pp. 6612-6621 ◽  
Author(s):  
Asao Ichige ◽  
Ichizo Kobayashi

ABSTRACT Certain type II restriction modification gene systems can kill host cells when these gene systems are eliminated from the host cells. Such ability to cause postsegregational killing of host cells is the feature of bacterial addiction modules, each of which consists of toxin and antitoxin genes. With these addiction modules, the differential stability of toxin and antitoxin molecules in cells plays an essential role in the execution of postsegregational killing. We here examined in vivo stability of the EcoRI restriction enzyme (toxin) and modification enzyme (antitoxin), the gene system of which has previously been shown to cause postsegregational host killing in Escherichia coli. Using two different methods, namely, quantitative Western blot analysis and pulse-chase immunoprecipitation analysis, we demonstrated that both the EcoRI restriction enzyme and modification enzyme are as stable as bulk cellular proteins and that there is no marked difference in their stability. The numbers of EcoRI restriction and modification enzyme molecules present in a host cell during the steady-state growth were estimated. We monitored changes in cellular levels of the EcoRI restriction and modification enzymes during the postsegregational killing. Results from these analyses together suggest that the EcoRI gene system does not rely on differential stability between the toxin and the antitoxin molecules for execution of postsegregational cell killing. Our results provide insights into the mechanism of postsegregational killing by restriction-modification systems, which seems to be distinct from mechanisms of postsegregational killing by other bacterial addiction modules.


2009 ◽  
Vol 37 (21) ◽  
pp. 7231-7238 ◽  
Author(s):  
Rachel M. Smith ◽  
Jytte Josephsen ◽  
Mark D. Szczelkun

2004 ◽  
Vol 11 (9) ◽  
pp. 838-843 ◽  
Author(s):  
Ralf Seidel ◽  
John van Noort ◽  
Carsten van der Scheer ◽  
Joost G P Bloom ◽  
Nynke H Dekker ◽  
...  

1993 ◽  
Vol 13 (7) ◽  
pp. 3841-3849 ◽  
Author(s):  
B Zenzie-Gregory ◽  
A Khachi ◽  
I P Garraway ◽  
S T Smale

Promoters containing Sp1 binding sites and an initiator element but lacking a TATA box direct high levels of accurate transcription initiation by using a mechanism that requires the TATA-binding protein (TBP). We have begun to address the role of TBP during transcription from Sp1-initiator promoters by varying the nucleotide sequence between -14 and -33 relative to the start site. With each of several promoters containing different upstream sequences, we detected accurate transcription both in vitro and in vivo, but the promoter strengths varied widely, particularly with the in vitro assay. The variable promoter activities correlated with, but were not proportional to, the abilities of the upstream sequences to function as TATA boxes, as assessed by multiple criteria. These results confirm that accurate transcription can proceed in the presence of an initiator, regardless of the sequence present in the -30 region. However, the results reveal a role for this upstream region, most consistent with a model in which initiator-mediated transcription requires binding of TBP to the upstream DNA in the absence of a specific recognition sequence. Moreover, in vivo it appears that the promoter strength is modulated less severely by altering the -30 sequence, consistent with a previous suggestion that TBP is not rate limiting in vivo for TATA-less promoters. Taken together, these results suggest that variations in the structure of a core promoter might alter the rate-limiting step for transcription initiation and thereby alter the potential modes of transcriptional regulation, without severely changing the pathway used to assemble a functional preinitiation complex.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1111-1121 ◽  
Author(s):  
Beata Furmanek-Blaszk ◽  
Robert Boratynski ◽  
Natalia Zolcinska ◽  
Marian Sektas

Methylation of a base in a specific DNA sequence protects the DNA from nucleolytic cleavage by restriction enzymes recognizing the same sequence. The MboII restriction–modification (R–M) system of Moraxella bovis ATCC 10900 consists of a restriction endonuclease gene and two methyltransferase genes. The enzymes encoded by this system recognize an asymmetrical sequence 5′-GAAGA-3′/3′-CTTCT-5′. M1.MboII modifies the last adenine in the recognition sequence 5′-GAAGA-3′ to N 6-methyladenine. A second methylase, M2.MboII, was cloned and purified to electrophoretic homogeneity using a four-step chromatographic procedure. It was demonstrated that M2.MboII modifies the internal cytosine in the recognition sequence 3′-CTTCT-5′, yielding N 4-methylcytosine, and moreover is able to methylate single-stranded DNA. The protein exists in solution as a monomer of molecular mass 30 000±1000 Da under denaturing conditions. Divalent cations (Ca2+, Mg2+, Mn2+ and Zn2+) inhibit M2.MboII methylation activity. It was found that the isomethylomer M2.NcuI from Neisseria cuniculi ATCC 14688 behaves in the same manner. Functional analysis showed that the complete MboII R–M system, consisting of two methyltransferases genes and the mboIIR gene, is the most stable and the least harmful to bacterial cells.


Sign in / Sign up

Export Citation Format

Share Document