Comparative Evaluation of Cardiac Markers in Differentiated Cells from Menstrual Blood and Bone Marrow-Derived Stem Cells In Vitro

2014 ◽  
Vol 56 (12) ◽  
pp. 1151-1162 ◽  
Author(s):  
Maryam Rahimi ◽  
Amir-Hassan Zarnani ◽  
Homa Mohseni-Kouchesfehani ◽  
Haleh Soltanghoraei ◽  
Mohammad-Mehdi Akhondi ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e86075 ◽  
Author(s):  
Sayeh Khanjani ◽  
Manijeh Khanmohammadi ◽  
Amir-Hassan Zarnani ◽  
Mohammad-Mehdi Akhondi ◽  
Ali Ahani ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 786-797
Author(s):  
Khosro Adibkia ◽  
Ali Ehsani ◽  
Asma Jodaei ◽  
Ezzatollah Fathi ◽  
Raheleh Farahzadi ◽  
...  

Finding new strategies for the treatment of heart failures using stem cells has attracted a lot of attention. Meanwhile, nanotechnology-based approaches to regenerative medicine hypothesize a possible combination of stem cells and nanotechnology in the treatment of diseases. This study aims to investigate the in vitro effect of silver nanoparticles (Ag-NPs) on the cardiomyogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) through detection of cardiac markers. For this purpose, MSCs were isolated from bone marrow resident and differentiated to the cardiac cells using a dedicated medium with Ag-NPs. Also, the cardiomyogenic differentiation of BM-MSCs was confirmed using immunocytochemistry. Then, real-time PCR and western blotting assay were used for measuring absolute telomere length (TL) measurement, and gene and protein assessment of the cells, respectively. It was found that 2.5 µg/mL Ag-NPs caused elongation of the telomeres and altered VEGF, C-TnI, VWF, SMA, GATA-4, TERT, and cyclin D protein and gene expression in the cardiomyogenically differentiated BM-MSCs. Also, there was a significant increase in the protein and gene expression of Wnt3 and β-catenin as main components of pathways. We concluded that Ag-NPs could change the in vitro expression of cardiac markers of BM-MSCs via the Wnt3/β-catenin signaling pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
R. Moreno ◽  
L. A. Rojas ◽  
Felip Vilardell Villellas ◽  
Vanessa Cervera Soriano ◽  
J. García-Castro ◽  
...  

Antitumor efficacy of systemically administered oncolytic adenoviruses (OAdv) is limited due to diverse factors such as liver sequestration, neutralizing interactions in blood, elimination by the immune system, and physical barriers in tumors. It is therefore of clinical relevance to improve OAdv bioavailability and tumor delivery. Among the variety of tumor-targeting strategies, the use of stem cells and specifically bone marrow-derived mesenchymal stem cells (BM-MSCs) is of particular interest due to their tumor tropism and immunomodulatory properties. Nonetheless, the invasive methods to obtain these cells, the low number of MSCs present in the bone marrow, and their restricted in vitro expansion represent major obstacles for their use in cancer treatments, pointing out the necessity to identify an alternative source of MSCs. Here, we have evaluated the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as cell carriers for regional delivery of an OAdv in the tumor. Our results indicate that MenSCs can be isolated without invasive methods, they have an increased proliferation rate compared to BM-MSCs, and they can be efficiently infected with different serotype 5-based capsid-modified adenoviruses, leading to viral replication and release. In addition, our in vivo studies confirmed the tumor-homing properties of MenSCs after regional administration.


2013 ◽  
Author(s):  
Melo Ocarino Natalia de ◽  
Silvia Silva Santos ◽  
Lorena Rocha ◽  
Juneo Freitas ◽  
Reis Amanda Maria Sena ◽  
...  

2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

2019 ◽  
Vol 698 ◽  
pp. 76-80 ◽  
Author(s):  
Hongna Yang ◽  
Jinhua Sun ◽  
Heng Chen ◽  
Feng Wang ◽  
Yan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document