cardiogenic differentiation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2622
Author(s):  
Preeti Ashok ◽  
Emmanuel S. Tzanakakis

Efforts to direct the specification of human pluripotent stem cells (hPSCs) to therapeutically important somatic cell types have focused on identifying proper combinations of soluble cues. Yet, whether exosomes, which mediate intercellular communication, play a role in the differentiation remains unexplored. We took a first step toward addressing this question by subjecting hPSCs to stage-wise specification toward cardiomyocytes (CMs) in scalable stirred-suspension cultures and collecting exosomes. Samples underwent liquid chromatography (LC)/mass spectrometry (MS) and subsequent proteomic analysis revealed over 300 unique proteins from four differentiation stages including proteins such as PPP2CA, AFM, MYH9, MYH10, TRA2B, CTNNA1, EHD1, ACTC1, LDHB, and GPC4, which are linked to cardiogenic commitment. There was a significant correlation of the protein composition of exosomes with the hPSC line and stage of commitment. Differentiating hPSCs treated with exosomes from hPSC-derived CMs displayed improved efficiency of CM formation compared to cells without exogenously added vesicles. Collectively, these results demonstrate that exosomes from hPSCs induced along the CM lineage contain proteins linked to the specification process with modulating effects and open avenues for enhancing the biomanufacturing of stem cell products for cardiac diseases.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Morteza Mahmoudi ◽  
Phillip C Yang ◽  
Vahid Serpooshan ◽  
Parisa Abadi ◽  
Mahyar Heydarpour

Introduction: Patient-specific human induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (CMs) are increasingly used for in vitro disease modeling and drug screening, as well in vivo regenerative therapies. The cardiac differentiation efficacy of hiPSCs, together with the maturation level of generated CMs, are critical factors in achieving the required numbers of functional patient-specific cardiac muscle cells for clinical applications. Although extensive studies have improved the efficacy of differentiation and maturation processes, the role of cell sex in these processes has not been fully investigated. Hypothesis: Cell sex affects i) the cardiogenic differentiation efficacy of hiPSCs; and ii) maturation processes of hiPSC-CMs. Methods and Results: We have successfully and reproducibly fabricated patterned substrates recapitulating the 3D shape of mature CMs, using photolithography approaches, and demonstrated that the substrate could i) accelerate the differentiation of hiPSCs to CMs, and ii) facilitate maturation and functionality of immature hiPSC-CMs. Male and female hiPSCs, derived from human amniotic mesenchymal stem cells of male and female fetuses, were cultured onto flat (control) vs. patterned substrates. A total of 400 differentiation assays were conducted, 200 per each cell sex, on the flat ( n = 100) and patterned ( n = 100) substrates. A chemically defined approach was used to differentiate the cells toward CMs. On the flat (conventional) substrates, 59% of batches of male and 87% of batches of female hiPSCs differentiated into beating CMs (> 80%). On the patterned substrates, these numbers changed to 83% and 94% of successful differentiations for male and female hiPSCs, respectively. These results indicate the significant effect of substrate-mediated topographical cues on the cardiac differentiation yield of stem cells and the batch-to-batch variation. On both substrate types, female cells demonstrated significantly higher success rates of cardiac differentiation compared to the male cells. In addition, the CMs produced on the patterned substrates demonstrated higher purity than those created on the flat substrates both for male and female cells. Quantitative polymerase chain reaction (qPCR) was used to probe the male and female cell differences in expression of genes related to cardiac maturity, contractility, and Ca 2+ transport (TNNT2, MYH6, MYH7, and CACNA1c) and the outcomes revealed substantially greater expression levels of the maturation genes in differentiated female CMs cultured on the patterned substrates compared to the male cells. Conclusions: These results indicate that male and female hiPSCs and hiPSC-CMs respond differently to the identical substrates in terms of their differentiation and maturation efficacies.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 422
Author(s):  
Jieh-Neng Wang ◽  
Chung-Dann Kan ◽  
Lain-Tze Lee ◽  
Lynn L. H. Huang ◽  
Ya-Li Hsiao ◽  
...  

Background: The roots of Codonopsis pilosula (Franch.) Nannf. have been used in traditional Chinese medicine for treating cardiovascular disease. In the current study, we aimed to discover herbal extracts from C. pilosula that are capable of improving cardiac function of infarcted hearts to develop a potential therapeutic approach. Methods: A mouse embryonic stem (ES) cell-based model with an enhanced green fluorescent protein (eGFP) reporter driven by a cardiomyocyte-specific promoter, the α-myosin heavy chain, was constructed to evaluate the cardiogenic activity of herbal extracts. Then, herbal extracts from C. pilosula with cardiogenic activity based on an increase in eGFP expression during ES cell differentiation were further tested in a rat myocardial infarction model with left anterior descending artery (LAD) ligation. Cardiac function assessments were performed using echocardiography, 1, 3, and 6 weeks post LAD ligation. Results: The herbal extract 417W from C. pilosula was capable of enhancing cardiogenic differentiation in mouse ES cells in vitro. Echocardiography results in the LAD-ligated rat model revealed significant improvements in the infarcted hearts at least 6 weeks after 417W treatment that were determined based on left ventricle fractional shortening (FS), fractional area contraction (FAC), and ejection fraction (EF). Conclusions: The herbal extract 417W can enhance the cardiogenic differentiation of ES cells and improve the cardiac function of infarcted hearts.


2019 ◽  
Vol 7 (4) ◽  
pp. 185
Author(s):  
MarwaA. A. Ibrahim ◽  
HebaE. M. Sharaf Eldin ◽  
AmanyM. I. Mousa ◽  
HalaG Metwaly ◽  
NadiaF.E. Abo-Hassan

Sign in / Sign up

Export Citation Format

Share Document