Gender-divergent expression of lipid and bile acid metabolism-related genes in adult mice offspring of dams fed a high-fat diet

2018 ◽  
Vol 43 (2) ◽  
pp. 329-337 ◽  
Author(s):  
Yuji Tanaka ◽  
Takanori Ikeda ◽  
Kazuo Yamamoto ◽  
Shiori Masuda ◽  
Hiroshi Ogawa ◽  
...  
Author(s):  
Kelly N. Z. Fuller ◽  
Colin S. McCoin ◽  
Alex T. Von Schulze ◽  
Claire J. Houchen ◽  
Michael A. Choi ◽  
...  

We recently reported that compared to males, female mice have increased hepatic mitochondrial respiratory capacity and are protected against high-fat diet-induced steatosis. Here we sought to determine the role of estrogen in hepatic mitochondrial function, steatosis, and bile acid metabolism in female mice, as well as investigate potential benefits of exercise in the absence or presence of estrogen via ovariectomy (OVX). Female C57BL mice (n=6 per group) were randomly assigned to sham surgery (Sham), ovariectomy (OVX), or OVX plus estradiol replacement therapy (OVX+Est). Half of the mice in each treatment group were sedentary (SED) or had access to voluntary wheel running (VWR). All mice were fed a high-fat diet (HFD) and were housed at thermoneutral temperatures. We assessed isolated hepatic mitochondrial respiratory capacity using the Oroboros O2k with both pyruvate and palmitoylcarnitine as substrates. As expected, OVX mice presented with greater hepatic steatosis, weight gain, and fat mass gain compared to Sham and OVX+Est animals. Hepatic mitochondrial coupling (Basal/State 3 respiration) with pyruvate was impaired following OVX, but both VWR and estradiol treatment rescued coupling to levels greater than or equal to Sham animals. Estradiol and exercise also had different effects on liver electron transport chain protein expression depending on OVX status. Markers of bile acid metabolism and excretion were also impaired by ovariectomy but rescued with estradiol add-back. Together our data suggest that estrogen depletion impairs hepatic mitochondrial function and liver health, and that estradiol replacement and modest exercise can aid in rescuing this phenotype.


2019 ◽  
Vol 10 (6) ◽  
pp. 3224-3236 ◽  
Author(s):  
Shiming Huang ◽  
Daorui Pang ◽  
Xiong Li ◽  
Lijun You ◽  
Zhengang Zhao ◽  
...  

This study aimed to evaluate the regulation of lipid metabolism and mechanism of a sulfated polysaccharide from Gracilaria Lemaneiformis (GLP).


2019 ◽  
Vol 65 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Reika YOSHITSUGU ◽  
Keidai KIKUCHI ◽  
Hitoshi IWAYA ◽  
Nobuyuki FUJII ◽  
Shota HORI ◽  
...  

Nutrition ◽  
2019 ◽  
Vol 65 ◽  
pp. 50-59 ◽  
Author(s):  
Qichao Chen ◽  
Min Liu ◽  
Pengyu Zhang ◽  
Shujun Fan ◽  
Jinli Huang ◽  
...  

2020 ◽  
Vol 64 ◽  
pp. 103651 ◽  
Author(s):  
Jinhua Cheng ◽  
Xiujuan Jiang ◽  
Jingwen Li ◽  
Shanshan Zhou ◽  
Tingmei Bai ◽  
...  

Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2021 ◽  
Author(s):  
Cong Liang ◽  
Xiao-Hong Zhou ◽  
Pi-Min Gong ◽  
Hai-Yue Niu ◽  
Lin-Zheng Lyu ◽  
...  

Lactiplantibacillus plantarum H-87 shows excellent bile salt hydrolase activity in vitro and effectively prevents obesity by regulating bile acid metabolism to inhibit liver fat accumulation, insulin resistance and lipid digestion in C57BL/6J mice.


2016 ◽  
Vol 310 (6) ◽  
pp. G367-G375 ◽  
Author(s):  
Yasuki Higashimura ◽  
Yuji Naito ◽  
Tomohisa Takagi ◽  
Kazuhiko Uchiyama ◽  
Katsura Mizushima ◽  
...  

High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis.


2014 ◽  
Vol 112 (10) ◽  
pp. 1592-1600 ◽  
Author(s):  
Isabelle Côté ◽  
Natalie A. Chapados ◽  
Jean-Marc Lavoie

The aim of the present study was to identify molecular mechanisms involved in liver fat and cholesterol accumulation in ovariectomised (Ovx) rats fed with high-cholesterol diets. VLDL assembly and bile acid metabolism were specifically targeted. After being either Ovx or sham-operated, the rats were fed a standard diet or a high-fat diet containing 0, 0·25 or 0·5 % cholesterol for 6 weeks. Although Ovx rats exposed to dietary cholesterol intake accumulated the greatest amount of hepatic fat and cholesterol, plasma cholesterol levels were lower (P< 0·05) in these animals than in the corresponding control rats. Accompanying this observation, ovariectomy and dietary cholesterol intake resulted in a down-regulation (P< 0·05) of the expression of genes associated with VLDL assembly, including microsomal TAG transfer protein, diacylglycerol acyltransferase 2, acyl-CoA:cholesterol acyltransferase 2 and apoB-100 as well as genes associated with bile acid metabolism including farnesoid X receptor and bile salt export pump (P< 0·01). These results indicate that high-fat/high-cholesterol diets and ovariectomy concomitantly disrupt hepatic lipid output through defects in VLDL assembly and, most probably, secretion. The results also point to a defect in hepatic bile acid secretion. The present study offers novel insights into intrahepatic lipid metabolism, which may be relevant to metabolic complications found in postmenopausal women.


Sign in / Sign up

Export Citation Format

Share Document