Synthesis and photoinduced charge stabilization in molecular tetrads featuring covalently linked triphenylamine-oligothiophene-BODIPY-C60

2021 ◽  
Vol 133 (3) ◽  
Author(s):  
ALEJANDRO BENITZ ◽  
MICHAEL B THOMAS ◽  
YOUNGWOO JANG ◽  
VLADAMIR NESTEROV ◽  
FRANCIS D’SOUZA
2020 ◽  
Vol 24 (01n03) ◽  
pp. 410-415 ◽  
Author(s):  
Juan A. Suanzes ◽  
Sumit Chaurasia ◽  
Rafael M. Krick Calderon ◽  
Dirk M. Guldi ◽  
Giovanni Bottari ◽  
...  

We report here the synthesis and characterization of some novel Zn(II)phthalocyanine (Pc)-corannulene conjugates and their complexation ability towards a pyridyl-functionalized C[Formula: see text] fullerene through metal-ligand supramolecular interactions. Steady-state and time-resolved photophysical studies carried out on these electron donor–acceptor (D–A) Zn(II)Pc-corannulene/C[Formula: see text] ensembles indicate the formation of photogenerated charge-separated species. Interestingly, a stabilization of the photoinduced charge-separated state is observed in the case of the D–A supramolecular complexes comprising the corannulene-substituted Zn(II)Pcs when compared to their non-corannulene functionalized Zn(II)Pc analogues. We rationalize this stabilizing effect of the charge-separated state exerted by the corannulene as a result of the increased [Formula: see text]-extension and augmented hydrophobicity of the Zn(II)Pc core by the covalently-linked polyaromatic hydrocarbon (PAH) fragment.


2015 ◽  
Vol 44 (4) ◽  
pp. 845-862 ◽  
Author(s):  
Mélina Gilbert ◽  
Bo Albinsson

This tutorial review focuses on photo-induced charge/energy transfer in covalently linked donor–bridge–acceptor (D–B–A) systems.


2011 ◽  
Vol 15 (09n10) ◽  
pp. 780-790 ◽  
Author(s):  
Nikolai V. Tkachenko ◽  
Alexander Efimov ◽  
Helge Lemmetyinen

Phthalocyanine-fullerene dyads have being under intensive development and investigation during past decade. Strong absorption of the phthalocyanine chromophore in the red part of the spectrum and ability of the dyad to perform efficient photoinduced charge transfer in non-polar media make them particularly attractive for organic optoelectronic applications. This microreview will focus on covalently linked phthalocyanine-fullerene conjugates in solutions and solid nanostructures. The covalent bonding enables sufficient degree of control over mutual organization of the donor and acceptor parts, and makes possible to investigate the relationships between molecular structure and functioning of single molecules and molecular assemblies.


Author(s):  
Richard D. Powell ◽  
James F. Hainfeld ◽  
Carol M. R. Halsey ◽  
David L. Spector ◽  
Shelley Kaurin ◽  
...  

Two new types of covalently linked, site-specific immunoprobes have been prepared using metal cluster labels, and used to stain components of cells. Combined fluorescein and 1.4 nm “Nanogold” labels were prepared by using the fluorescein-conjugated tris (aryl) phosphine ligand and the amino-substituted ligand in the synthesis of the Nanogold cluster. This cluster label was activated by reaction with a 60-fold excess of (sulfo-Succinimidyl-4-N-maleiniido-cyclohexane-l-carboxylate (sulfo-SMCC) at pH 7.5, separated from excess cross-linking reagent by gel filtration, and mixed in ten-fold excess with Goat Fab’ fragments against mouse IgG (obtained by reduction of F(ab’)2 fragments with 50 mM mercaptoethylamine hydrochloride). Labeled Fab’ fragments were isolated by gel filtration HPLC (Superose-12, Pharmacia). A combined Nanogold and Texas Red label was also prepared, using a Nanogold cluster derivatized with both and its protected analog: the cluster was reacted with an eight-fold excess of Texas Red sulfonyl chloride at pH 9.0, separated from excess Texas Red by gel filtration, then deprotected with HC1 in methanol to yield the amino-substituted label.


Author(s):  
Mary Beth Downs ◽  
Wilson Ribot ◽  
Joseph W. Farchaus

Many bacteria possess surface layers (S-layers) that consist of a two-dimensional protein lattice external to the cell envelope. These S-layer arrays are usually composed of a single species of protein or glycoprotein and are not covalently linked to the underlying cell wall. When removed from the cell, S-layer proteins often reassemble into a lattice identical to that found on the cell, even without supporting cell wall fragments. S-layers exist at the interface between the cell and its environment and probably serve as molecular sieves that exclude destructive macromolecules while allowing passage of small nutrients and secreted proteins. Some S-layers are refractory to ingestion by macrophages and, generally, bacteria are more virulent when S-layers are present.When grown in rich medium under aerobic conditions, B. anthracis strain Delta Sterne-1 secretes large amounts of a proteinaceous extractable antigen 1 (EA1) into the growth medium. Immunocytochemistry with rabbit polyclonal anti-EAl antibody made against the secreted protein and gold-conjugated goat anti-rabbit IgG showed that EAI was localized at the cell surface (fig 1), which suggests its role as an S-layer protein.


Sign in / Sign up

Export Citation Format

Share Document