Characteristics of convective/stratiform dominance on surface rainfall over a few tropical locations

2020 ◽  
Vol 129 (1) ◽  
Author(s):  
Rajasri Sen Jaiswal ◽  
Siva M ◽  
Rasheed M ◽  
Thirumala Lakshmi K
Keyword(s):  
2016 ◽  
Vol 12 (3) ◽  
pp. 267 ◽  
Author(s):  
Riza Arian Noor ◽  
Muhammad Ruslan ◽  
Gusti Rusmayadi ◽  
Badaruddin Badaruddin

The irregularity of observation sites distribution and network density, lack data availability and discontinuity are the obstacles to analyzing and producing the information of agroclimate zone in South Kalimantan. TRMM satellite needs to be researched to overcome the limitations of surface observation data. This study intended to validate TRMM 3B43 satellite data with surface rainfall, to produce Oldeman agroclimate zone based on TRMM satellite data and to analyze the agroclimate zone for agricultural resources management. Data validation is done using the statistical method by analyzing the correlation value (r) and RMSE (Root Mean Square Error). The agroclimate zone is classified based on Oldeman climate classification type. The calculation results are mapped spatially using Arc GIS 10.2 software. The validation result of the TRMM satellite and surface rainfall data shows a high correlation value for the monthly average. The value of correlation coefficient is 0,97 and 25 mm for RMSE value. Oldeman agroclimate zone based on TRMM satellite data in south Kalimantan is divided into five climate zones, such as B1, B2, C1, C2, and D1.


2019 ◽  
Vol 36 (4) ◽  
pp. 451-464
Author(s):  
Yaping Wang ◽  
Yongjie Huang ◽  
Xiaopeng Cui

2010 ◽  
Vol 10 (7) ◽  
pp. 3335-3351 ◽  
Author(s):  
N. Kuba ◽  
M. Murakami

Abstract. The effect of hygroscopic seeding on warm rain clouds was examined using a hybrid cloud microphysical model combining a Lagrangian Cloud Condensation Nuclei (CCN) activation model, a semi-Lagrangian droplet growth model, and an Eulerian spatial model for advection and sedimentation of droplets. This hybrid cloud microphysical model accurately estimated the effects of CCN on cloud microstructure and suggested the following conclusions for a moderate continental air mass (an air mass with a large number of background CCN). (1) Seeding can hasten the onset of surface rainfall and increase the accumulated amount of surface rainfall if the amount and radius of seeding particles are appropriate. (2) The optimal radius of monodisperse particles to increase rainfall becomes larger with the increase in the total mass of seeding particles. (3) Seeding with salt micro-powder can hasten the onset of surface rainfall and increase the accumulated amount of surface rainfall if the amount of seeding particles is sufficient. (4) Seeding by a hygroscopic flare decreases rainfall in the case of large updraft velocity (shallow convective cloud) and increases rainfall slightly in the case of small updraft velocity (stratiform cloud). (5) Seeding with hygroscopic flares including ultra-giant particles (r>5 μm) hastens the onset of surface rainfall but may not significantly increase the accumulated surface rainfall amount. (6) Hygroscopic seeding increases surface rainfall by two kinds of effects: the "competition effect" by which large soluble particles prevent the activation of smaller particles and the "raindrop embryo effect" in which giant soluble particles can immediately become raindrop embryos. In some cases, one of the effects works, and in other cases, both effects work, depending on the updraft velocity and the amount and size of seeding particles.


2007 ◽  
Vol 64 (2) ◽  
pp. 360-380 ◽  
Author(s):  
Jian-Jian Wang ◽  
Xiaofan Li ◽  
Lawrence D. Carey

Abstract A two-dimensional cloud-resolving simulation is combined with dual-Doppler and polarimetric radar analysis to study the evolution, dynamic structure, cloud microphysics, and rainfall processes of monsoon convection observed during the South China Sea (SCS) summer monsoon onset. Overall, the model simulations show many similarities to the radar observations. The rainband associated with the convection remains at a very stable position throughout its life cycle in the northern SCS. The reflectivity pattern exhibits a straight upward structure with little tilt. The positions of the convective, transition, and stratiform regions produced by the model are consistent with the observations. The major difference from the observations is that the model tends to overestimate the magnitude of updraft. As a result, the maximum reflectivity generated by the model appears at an elevated altitude. The surface rainfall processes and associated thermodynamic, dynamic, and cloud microphysical processes are examined by the model in terms of surface rainfall, temperature and moisture perturbations, circulations, and cloud microphysical budget. At the preformation and dissipating stages, although local vapor change and vapor convergence terms are the major contributors in determining rain rate, they cancel each other out and cause little rain. The vapor convergence/divergence is closely related to the lower-tropospheric updraft/subsidence during the early/late stages of the convection. During the formation and mature phases, vapor convergence term is in control of the rainfall processes. Meanwhile, water microphysical processes are dominant in these stages. The active vapor condensation process causes a large amount of raindrops through the collection of cloud water by raindrops. Ice microphysical processes including riming are negligible up to the mature phase but are dominant during the weakening stage. Cloud source/sink terms make some contributions to the rain rate at the formation and weakening stages, while the role of surface evaporation term is negligible throughout the life cycle of the convection.


2006 ◽  
Vol 16 (9) ◽  
pp. 967-973 ◽  
Author(s):  
ZHOU Yushu ◽  
Cui Xiaopeng ◽  
Li Xiafoan

2015 ◽  
Vol 72 (3) ◽  
pp. 1045-1062 ◽  
Author(s):  
Wolfgang Langhans ◽  
Kyongmin Yeo ◽  
David M. Romps

Abstract The precipitation efficiency of cumulus congestus clouds is investigated with a new Lagrangian particle framework for large-eddy simulations. The framework is designed to track particles representative of individual water molecules. A Monte Carlo approach facilitates the transition of particles between the different water classes (e.g., vapor, rain, or graupel). With this framework, it is possible to reconstruct the pathways of water as it moves from vapor at a particular altitude to rain at the surface. By tracking water molecules through both physical and microphysical space, the precipitation efficiency can be studied in detail as a function of height. Large-eddy simulations of individual cumulus congestus clouds show that the clouds convert entrained vapor to surface precipitation with an efficiency of around 10%. About two-thirds of all vapor that enters the cloud does so by entrainment in the free troposphere, but free-tropospheric vapor accounts for only one-third to one-half of the surface rainfall, with the remaining surface rainfall originating as vapor entrained through the cloud base. The smaller efficiency with which that laterally entrained water is converted into surface precipitation results from the smaller efficiencies with which it condenses, forms precipitating hydrometeors, and reaches the surface.


2013 ◽  
Vol 51 (2) ◽  
pp. 226-238 ◽  
Author(s):  
B. Kochtubajda ◽  
W. R. Burrows ◽  
A. Liu ◽  
J. K. Patten

Sign in / Sign up

Export Citation Format

Share Document