scholarly journals Hic1 deletion unleashes quiescent connective tissue stem cells and impairs skeletal muscle regeneration

2019 ◽  
Vol 14 (1) ◽  
pp. 131-133 ◽  
Author(s):  
Osvaldo Contreras
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Raed Rtail ◽  
Olena Maksymova ◽  
Viacheslav Illiashenko ◽  
Olena Gortynska ◽  
Oleksii Korenkov ◽  
...  

Herein, the structural effect of autologous platelet-rich plasma (PRP) on posttraumatic skeletal muscle regeneration in rats with chronic hyperglycemia (CH) was tested. 130 white laboratory male rats divided into four groups (I—control; II—rats with CH; III—rats with CH and PRP treatment; and IV—rats for CH confirmation) were used for the experiment. CH was simulated by streptozotocin and nicotinic acid administration. Triceps surae muscle injury was reproduced by transverse linear incision. Autologous PRP was used in order to correct the possible negative CH effect on skeletal muscle recovery. On the 28th day after the injury, the regenerating muscle fiber and blood vessel number in the CH+PRP group were higher than those in the CH rats. However, the connective tissue area in the CH group was larger than that in the CH+PRP animals. The amount of agranulocytes in the regenerating muscle of the CH rats was lower compared to that of the CH+PRP group. The histological analysis of skeletal muscle recovery in CH+PRP animals revealed more intensive neoangiogenesis compared to that in the CH group. Herewith, the massive connective tissue development and inflammation signs were observed within the skeletal muscle of CH rats. Obtained results suggest that streptozotocin-induced CH has a negative effect on posttraumatic skeletal muscle regeneration, contributing to massive connective tissue development. The autologous PRP injection promotes muscle recovery process in rats with CH, shifting it away from fibrosis toward the complete muscular organ repair.


2006 ◽  
Vol 34 (9) ◽  
pp. 1261-1269 ◽  
Author(s):  
Edyta Brzóska ◽  
Iwona Grabowska ◽  
Grażyna Hoser ◽  
Władysława Stremińska ◽  
Danuta Wasilewska ◽  
...  

2016 ◽  
Author(s):  
Floriane Lacour ◽  
Elsa Vezin ◽  
Florian Bentzinger ◽  
Marie-Claude Sincennes ◽  
Robert D. Mitchell ◽  
...  

SUMMARYTissue regeneration requires the selective activation and repression of specific signaling pathways in stem cells. As such, the Wnt signaling pathways have been shown to control stem cell fate. In many cell types, the R-Spondin (Rspo) family of secreted proteins acts as potent activators of the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. Firstly we show that Rspo1-null muscles do not display any abnormalities at the basal level. However deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We found that muscle stem cells lacking Rspo1 show delayed differentiation. Transcriptome analysis further demonstrated that Rspo1 is required for the activation of Wnt/β-catenin target genes in muscle cells. Furthermore, muscle cells lacking Rspo1 fuse with a higher frequency than normal cells, leading to larger myotubes containing more nuclei both in vitro and in vivo. We found the increase in muscle fusion was dependent on up-regulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that antagonistic control of canonical and non-canonical Wnt signaling pathways by Rspo1 in muscle stem cell progeny is important for restitution of normal muscle architecture during skeletal muscle regeneration.


Gerontology ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Sophie Joanisse ◽  
Joshua P. Nederveen ◽  
Tim Snijders ◽  
Bryon R. McKay ◽  
Gianni Parise

Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults.


Sign in / Sign up

Export Citation Format

Share Document