scholarly journals The US Department of Energy Great Lakes Bioenergy Research Center: Midwestern Biomass as a Resource for Renewable Fuels

2010 ◽  
Vol 3 (1) ◽  
pp. 3-5 ◽  
Author(s):  
Steven Slater ◽  
Kenneth Keegstra ◽  
Timothy J. Donohue
Author(s):  
Leonel E. Lagos

The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclearweapons development and government-sponsored nuclear energy research. Since 1995, Florida International University’s Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to “hands-on” DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a “pipeline” of minority STEM students trained and mentored to enter DOE’s environmental cleanup workforce. The program was designed to help address DOE’s future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE’s environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD&R and ANS Robotics Topical meetings and this year two Fellows will present at the International Conference on Environmental Remediation and Radioactive Waste Management (ICEM13) in Brussels, Belgium. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors, commercial nuclear power companies, and other STEM industry (GE, Boeing, Lockheed Martin, Johnson & Johnson, Beckman-Coulter, and other top companies). This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy’s Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well-trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM’s environmental cleanup mission. The paper will showcase FIU’s DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU’s Applied Research Center and across the DOE Complex by participating in summer internship assignments.


2021 ◽  
Vol 276 ◽  
pp. 116695
Author(s):  
Julie Peller ◽  
Meredith B. Nevers ◽  
Muruleedhara Byappanahalli ◽  
Cassie Nelson ◽  
Bharath Ganesh Babu ◽  
...  
Keyword(s):  

Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


2020 ◽  
Vol 11 (3) ◽  
pp. 607-632
Author(s):  
Andrew Tucker ◽  
Lindsay Chadderton ◽  
Gust Annis ◽  
Alisha Davidson ◽  
Joel Hoffman ◽  
...  

2011 ◽  
Vol 1 (1) ◽  
pp. 269-276
Author(s):  
P. Thakur ◽  
J. Monk ◽  
J. L. Conca

Abstract The Waste Isolation Pilot Plant (WIPP), a US Department of Energy (DOE) facility, is a deep geologic transuranic waste disposal site designed for the safe disposal of transuranic (TRU) wastes generated from the US defense program. Monitoring is a key component of the development and operation of any nuclear repository and is important to the WIPP performance assessment. Initial concerns over the release of radioactive and chemical contaminants from the WIPP led to various monitoring programs, including the independent, academic-based WIPP environmental monitoring (WIPP-EM) program conducted by the New Mexico State University (NMSU) Carlsbad Environmental Monitoring and Research Center (CEMRC) located in Carlsbad, NM. The mission of CEMRC is to develop and implement an independent health and environmental monitoring program in the vicinity of WIPP and make the results easily accessible to the public and all interested parties. Under the WIPP-EM program constituents monitored include: (1) selected radionuclides, elements, and ions of interest in air, soil, vegetation, drinking water, surface water and sediment from within a 100-mile radius of WIPP as well as in the air exiting the WIPP exhaust shaft, and (2) internally deposited radionuclides in the citizenry living within a 100-mile radius of WIPP. This article presents an evaluation of more than tens years of environmental monitoring data that informed the public that there is no evidence of increases in radiological contaminants in the region that could be attributed to releases from the WIPP. Such an extensive monitoring program and constant public engagement is an ideal model for all nuclear waste repositories anywhere in the world.


Sign in / Sign up

Export Citation Format

Share Document