scholarly journals Implicit numerical scheme based on SMAC method for unsteady incompressible Navier-Stokes equations

2008 ◽  
Vol 5 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Zhenlin Li ◽  
Yongxue Zhang
Author(s):  
Yi-Hsiang Yu ◽  
Spyros A. Kinnas

This paper addresses the hull responses near resonance in beam seas. A 2-D analysis is performed, and the hull form is free to roll and to move in the vertical direction (2-DOF). A cell center based finite volume method is applied for solving the Navier-Stokes equations. The numerical scheme is utilized for analyzing the flow field around the hull section as well as for predicting the wave and floating hull interaction. The effect of the hull corner geometry and the effectiveness of using bilge keels on roll damping are examined. The results show that the maximum roll response is reduced when the hull is free to heave and to roll as compared to the roll-only case (1-DOF). In general, the maximum hull response decreases when the shed vortices are induced by the sharp edge, and the reduction increases as the keel width increases.


2011 ◽  
Vol 668 ◽  
pp. 100-112 ◽  
Author(s):  
B. U. FELDERHOF ◽  
G. OOMS

The flow of a viscous compressible fluid in a circular tube generated by a sudden impulse at a point on the axis is studied on the basis of the linearized Navier–Stokes equations. A no-slip boundary condition is assumed to hold on the wall of the tube. An efficient numerical scheme has been developed for the calculation of flow velocity and pressure disturbance as a function of position and time.


2014 ◽  
Vol 16 (1) ◽  
pp. 239-263 ◽  
Author(s):  
Marcello Righi

AbstractThe implementation of a turbulent gas-kinetic scheme into a finite-volume RANS solver is put forward, with two turbulent quantities, kinetic energy and dissipation, supplied by an allied turbulence model. This paper shows a number of numerical simulations of flow cases including an interaction between a shock wave and a turbulent boundary layer, where the shock-turbulent boundary layer is captured in a much more convincing way than it normally is by conventional schemes based on the Navier-Stokes equations. In the gas-kinetic scheme, the modeling of turbulence is part of the numerical scheme, which adjusts as a function of the ratio of resolved to unresolved scales of motion. In so doing, the turbulent stress tensor is not constrained into a linear relation with the strain rate. Instead it is modeled on the basis of the analogy between particles and eddies, without any assumptions on the type of turbulence or flow class. Conventional schemes lack multiscale mechanisms: the ratio of unresolved to resolved scales – very much like a degree of rarefaction – is not taken into account even if it may grow to non-negligible values in flow regions such as shocklayers. It is precisely in these flow regions, that the turbulent gas-kinetic scheme seems to provide more accurate predictions than conventional schemes.


Author(s):  
Charlotte Perrin ◽  
Khaled Saleh

Abstract In this paper we prove a convergence result for a discretization of the three-dimensional stationary compressible Navier–Stokes equations assuming an ideal gas pressure law $p(\rho )=a \rho ^{\gamma }$ with $\gamma> \frac{3}{2}$. It is the first convergence result for a numerical method with adiabatic exponents $\gamma $ less than $3$ when the space dimension is 3. The considered numerical scheme combines finite volume techniques for the convection with the Crouzeix–Raviart finite element for the diffusion. A linearized version of the scheme is implemented in the industrial software CALIF3S developed by the French Institut de Radioprotection et de Sûreté Nucléaire.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 690
Author(s):  
Maurizio Tavelli ◽  
Sebastiano Piccolroaz ◽  
Giulia Stradiotti ◽  
Giuseppe Roberto Pisaturo ◽  
Maurizio Righetti

The selective trapping and erosion of fine particles that occur in a gravel bed river have important consequences for its stream ecology, water quality, and overall sediment budgeting. This is particularly relevant in water bodies that experience periodic alternation between sediment supply-limited conditions and high sediment loads, such as downstream from a dam. While experimental efforts have been spent to investigate fine sediment erosion and transport in gravel bed rivers, a comprehensive overview of the leading processes is hampered by the difficulties in performing flow field measurements below the gravel crest level. In this work, a new two-dimensional, semi-implicit numerical scheme for the solution of the Navier-Stokes equations in the presence of deposited and erodible sediment is presented, and tested against analytical solutions and performing numerical tests. The scheme is mass-conservative, computationally efficient, and allows for a fine discretization of the computational domain. Overall, this makes the model suitable to appreciate small-scales phenomena such as inter-grain circulation cells, thus offering a valid alternative to evaluate the shear stress distribution, on which erosion and transport processes depend, compared to traditional experimental approaches. In this work, we present proof-of-concept of the proposed model, while future research will focus on its extension to a three-dimensional and parallelized version, and on its application to real case studies.


Author(s):  
F. M. Skalak ◽  
C. Y. Wang

AbstractViscous fluid is squeezed out from a shrinking (or expanding) tube whose radius varies with time as (1 – βt)½. The full Navier–Stokes equations reduce to a non-linear ordinary differential equation governed by a non-dimensional parameter S representing the relative importance of unsteadiness to viscosity. This paper studies the analytic solutions for large | S | through the method of matched asymptotic expansions. A simple numerical scheme for integration is presented. It is found that boundary layers exist near the walls for large | S |. In addition, flow reversals and oscillations of the velocity profile occur for large negative S (fast expansion of the tube).


Sign in / Sign up

Export Citation Format

Share Document