scholarly journals Sedimentary environment controls on the accumulation of organic matter in the Upper Ordovician Wufeng–Lower Silurian Longmaxi mudstones in the Southeastern Sichuan Basin of China

2018 ◽  
Vol 16 (1) ◽  
pp. 44-57 ◽  
Author(s):  
Lei Yang ◽  
Bo Ran ◽  
Yu-Yue Han ◽  
Shu-Gen Liu ◽  
Yue-Hao Ye ◽  
...  
2018 ◽  
Vol 6 (4) ◽  
pp. SN119-SN132
Author(s):  
Dengliang Gao ◽  
Taizhong Duan ◽  
Zhiguo Wang ◽  
Xiaofei Shang

The Fuling gas field in the southeastern Sichuan Basin is the first and the largest shale gas play in China that has been producing primarily from the organic-rich shale in the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation. Newly processed 3D seismic data along with well-completion data in the gas field reveal important structural, depositional, and reservoir details in the Lower Paleozoic sedimentary section. Lateral (along-stratal) variations in time structure and bed curvature demonstrate the diversity in faults that can be classified based on their orientation (regional and cross-regional), scale (small, intermediate, and large), and mode (contractional, extensional, and wrench). Vertical (cross-stratal) variations in time structure and bed curvature demonstrate that the deformational intensity increases from the Lower Cambrian to the Upper Ordovician, then decreases from the Upper Ordovician to the Silurian. Seismic isochron and facies analyses indicate that the structural deformation influenced the syntectonic deposition of turbidite sand in a channel complex above the reservoir. The pore pressure, porosity, and gas productivity of the reservoir are the highest in the central portion of the field, where small-scale faults dominate, but drop significantly at the edges of the field, where large-scale lineaments dominate. The relationships suggest that faults and fractures could either reduce or enhance pore pressure, porosity, and gas productivity, depending on their scale. Large-scale faults have the most negative impact on gas enrichment and pressure build-up, leading to reduced pressure, porosity, and productivity; whereas, small-scale ones have the least negative or even positive impact on gas enrichment and pressure build-up, leading to increased pressure, porosity, and productivity. These observations and interpretations offer new insight into the dynamic interplay among tectonic deformation, syn-tectonic sedimentation, and reservoir integrity during the Caledonian (Late Ordovician to Silurian) in the southeastern Sichuan Basin (China).


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Wen ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The upper Ordovician-lower Silurian shale has always been the main target of marine shale gas exploration in southern China. However, the shale gas content varies greatly across different regions. The organic matter content is one of the most important factors in determining gas content; therefore, determining the enrichment mechanisms of organic matter is an important problem that needs to be solved urgently. In this paper, upper Ordovician-lower Silurian shale samples from the X-1 and Y-1 wells that are located in the southern Sichuan area of the upper Yangtze region and the northwestern Jiangxi area of the lower Yangtze region, respectively, are selected for analysis. Based on the core sample description, well logging data analysis, mineral and elemental composition analysis, silicon isotope analysis, and TOC (total organic carbon) content analysis, the upper Ordovician-lower Silurian shale is studied to quantitatively calculate its content of excess silicon. Subsequently, the results of elemental analysis and silicon isotope analysis are used to determine the origin of excess silicon. Finally, we used U/Th to determine the characteristics of the redox environment and the relationship between excess barium and TOC content to judge paleoproductivity and further studied the mechanism underlying sedimentary organic matter enrichment in the study area. The results show that the excess silicon from the upper Ordovician-lower Silurian shale in the upper Yangtze area is derived from biogenesis. The sedimentary water body is divided into an oxygen-rich upper water layer that has higher paleoproductivity and a strongly reducing lower water that is conducive to the preservation of sedimentary organic matter. Thus, for the upper Ordovician-lower Silurian shale in the upper Yangtze region, exploration should be conducted in the center of the blocks with high TOC contents and strongly reducing water body. However, the excess silicon in the upper Ordovician-lower Silurian shale of the lower Yangtze area originates from hydrothermal activity that can enhance the reducibility of the bottom water and carry nutrients from the crust to improve paleoproductivity and enrich sedimentary organic matter. Therefore, for the upper Ordovician-lower Silurian shale in the lower Yangtze region, exploration should be conducted in the blocks near the junction of the two plates where hydrothermal activity was active.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 495 ◽  
Author(s):  
Yizhou Huang ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The effect of organic matter on hydrocarbon potential, storage space, and gas content of shale is well-known. Additionally, present-day content of sedimentary organic matter in shale is controlled by depositional and preservation processes. Therefore, a study of the enrichment mechanisms of sedimentary organic matter provides a scientific basis for the determination of favorable areas of shale gas. In this study the Upper Ordovician Xinkailing Fm. and the first member of the Lower Silurian Lishuwo Fm. were examined. Stratigraphic sequences were identified through conventional logs and elemental capture spectrum data. Oxygen isotope analysis was applied to recover paleotemperature of seawater in the study area. The excess silicon content was calculated and the origin of the silica was determined by the Fe-Al-Mn ternary plot. The enrichment mechanism of organic matter was analyzed by two aspects: redox conditions and paleoproductivity. As a result, the stratigraphic interval was divided into two 3rd-order sequences. Through oxygen isotope, the paleotemperature of seawater was 62.7–79.2 °C, providing evidence of the development of hydrothermal activity. Analysis of excess siliceous minerals identified two siliceous mineral origins: terrigenous and hydrothermal. It also revealed an upwards decreasing tendency in hydrothermal activity intensity. Strong hydrothermal activity during the Late Ordovician, recognized as TST1, formed a weak-oxidizing to poor-oxygen environment with high paleoproductivity, which promoted organic matter enrichment. During the Late Ordovician to the Early Silurian, identified as RST1, TST2, and RST2, weakening hydrothermal activity caused the decline of paleoproductivity and increased oxidation of bottom waters, leading to a relative decrease of organic matter content in the shale. Therefore, favorable areas of shale gas accumulation in the Upper Ordovician and Lower Silurian are determined stratigraphically as the TST1, with a high total organic carbonate content. Geographically, the hydrothermally-active area near the plate connection of the Yangtze and the Cathaysian is most favorable.


Sign in / Sign up

Export Citation Format

Share Document