Practical method for determination of air kerma by use of an ionization chamber toward construction of a secondary X-ray field to be used in clinical examination rooms

2016 ◽  
Vol 9 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Itsumi Maehata ◽  
Hiroaki Hayashi ◽  
Natsumi Kimoto ◽  
Kazuki Takegami ◽  
Hiroki Okino ◽  
...  
2013 ◽  
Vol 544 ◽  
pp. 445-449
Author(s):  
Ran Yan ◽  
Yu Bing Liu ◽  
Ping Dai

When an X-ray photon which is generated by the sample enters into the detector, pulses can be produced and recorded. The detector is unable to respond to another photon that enters at the same time when a photon is being detected. The time that the detector takes to respond to a photon is regarded as dead time. For the x-ray fluorescence detector, the recorded count is less than the real count impulse due to dead time. Hence, to correct x-ray intensity of samples whose element content is vastly different, determination of dead time is necessary. In this paper, a new and complete way to determine dead time is proposed, which can be summarized as “intensity pair method”. Three “intensity pairs” were used for determining dead time, which were “intensity pair” of collimators (S2 and S4), “intensity pair” of spectral lines (Kα and Kβ) and “intensity pair” of beads with different flux-sample ratio (higher SH and lower SL analyte content in the beads). It comes to a conclusion that dead time obtained from “intensity pair” of beads is the most practical method for correcting X-ray fluorescence intensity. As for routine analysis, the dead time of proportional counter can be accurate to 1×10-9s, which can make intensity correction error less than 0.1%.


2018 ◽  
Vol 63 (2) ◽  
pp. 62-64 ◽  
Author(s):  
А. Белоусов ◽  
A. Belousov ◽  
Г. Крусанов ◽  
G. Krusanov ◽  
А. Черняев ◽  
...  

Purpose: Determining the absorbed dose produced by photons, it is often assumed that it is equal to the radiation kerma. This assumption is valid only in the presence of an electronic equilibrium, which in turn is never ensured in practice. It leads to some uncertainty in determining the absorbed dose in the irradiated sample during radiobiological experiments. Therefore, it is necessary to estimate the uncertainty in determining the relative biological effectiveness of X-rays associated with uncertainty in the determination of the absorbed dose. Material and methods: The monochromatic X-ray photon emission is simulated through a standard 25 cm2 plastic flask containing 5 ml of the model culture medium (biological tissue with elemental composition C5H40O18N). The calculation of the absorbed dose in a culture medium is carried out in two ways: 1) the standard method, according to which the ratio of the absorbed dose in the medium and the ionization chamber is equal to the ratio of kerma in the medium and air; 2) determination of the absorbed dose in the medium and in the sensitive volume of the ionization chamber by computer simulation and calculating the ratio of these doses. For each primary photon energies, 108 histories are modeled, which makes it possible to achieve a statistical uncertainty not worse than 0.1 %. The energy step was 1 keV. The spectral distribution of X-ray energy is modeled separately for each set of anode materials, thickness and materials of the primary and secondary filters. The specification of the X-ray beams modeled in this work corresponds to the standards ISO 4037 and IEC 61267. Within the linear-quadratic model, the uncertainty of determining the RBEmax values is directly proportional to the uncertainty in the determination of the dose absorbed by the sample under study. Results: At energy of more than 60 keV, the ratios for water and biological tissue practically do not differ. At lower energies, up to about 20 keV, the ratio of the coefficients of air and water is slightly less than that of air and biological tissue. The maximum difference is ~ 1 % than usual and the equality of absorbed doses in the ionization chamber and sample is justified. At photon energy of 60 keV for the geometry in question, the uncertainty in determining the dose is about 50 %. For non-monochromatic radiation, the magnitude of the uncertainty is determined by the spectral composition of the radiation, since the curves vary greatly in the energy range 10–100 keV. It is shown that, depending on the spectral composition of X-ray radiation, uncertainty in the determination of the absorbed dose can reach 40–60 %. Such large uncertainty is due to the lack of electronic equilibrium in the radiation geometry used in practice. The spread of RBE values determined from the data of radiobiological experiments carried out by different authors can be determined both by differences in the experimental conditions and by uncertainty in the determination of the absorbed dose. Using Fricke dosimeters instead of ionization chambers in the same geometry allows you to reduce the uncertainty approximately 2 times, up to 10–30 %. Conclusion: The computer simulation of radiobiological experiments to determine the relative biological effectiveness of X-ray radiation is performed. The geometry of the experiments corresponds to the conditions for the use of standard bottles placed in the side holders. It is shown that the ratio of absorbed doses and kerma in the layers of biological tissue and air differ among themselves with an uncertainty up to 60 %. Depending on the quality of the beam, the true absorbed dose may differ from the one calculated on the assumption of kerma and dose equivalence by 50 %. Uncertainty in determining the RBE in these experiments is of the same order. The results are presented for X-ray beams with negligible fraction of photons with energies less than 10 keV. For beams of a different quality, the uncertainty in determination can significantly increase. For the correct evaluation of RBE, it is necessary to develop a uniform standard for carrying out radiobiological experiments. This standard should regulate both the geometry of the experiments and the conduct of dosimetric measurements.


2006 ◽  
Vol 125 (1-4) ◽  
pp. 198-204 ◽  
Author(s):  
A. Hakanen ◽  
A. Kosunen ◽  
P. Poyry ◽  
M. Tapiovaara

1989 ◽  
Vol 33 ◽  
pp. 295-303 ◽  
Author(s):  
T. C. Huang ◽  
W. Parrish ◽  
N. Masciocchi ◽  
P. W. Wang

AbstractA precise and practical method for the determination of d-values and lattice parameters from digital diffraction data is described. Systematic errors are corrected mathematically during a d-spacing / lattice-parameter least-Squares refincment process making it unnecessary to use internal standards. X-ray and synchrotron diffraction data of an ICDD alumina plate obtained with a wide variety of experimental conditions and analysis parameters were used to study the precision in the derivation of d-values and the accuracy in the determination of lattice parameters. Results showed that the precision in determining d-values was high with |Δd/d|avg ranging from 2x105 to 4x10-5. Using the results obtained from the high precision XRD analysis as a reference standard, the accuracy in the lattice parameter determinations from the synchrotron diffraction data reached the l-2x10-6] range. Lattice parameters, with an accuracy in the high 10-5 range, were also obtained using parameters commonly used in a routine XRD analysis such as a wide RS (0.11°) for high intensity, peaks only in the front reflection region, no Kα2 stripping, and a Single 2θo parameter for systematic error corrections.


2019 ◽  
Vol 48 (5) ◽  
pp. 20180301 ◽  
Author(s):  
Richard Smith ◽  
Richard Tremblay ◽  
Graeme M Wardlaw

Objectives: Evaluate stray radiation to the operator, as represented by a plane within the significant zone of occupancy (SZO), produced by five models of hand-held intraoral dental X-ray devices (HIDXDs). Methods: The stray radiation for five models of HIDXDs was measured, using an anthropomorphic tissue-equivalent head phantom as a scattering object. An ionization chamber was used to measure the air kerma (μGy) at 63 positions in a 160 cm high by 60 cm wide plane that was 10 cm behind the X-ray device, identified as being within the SZO. Results: Based on the measured air kerma from stray radiation of five different HIDXDs, the estimated annual air kerma at all measured spatial positions was calculated. When calculated using a median air kerma of 0.8 mGy at the distal end of the cone, as typically required for digital image receptors, 1 the ranges for estimated annual air kerma in the SZO across the devices were 0.14–0.77 mGy for the median, 0.41–1.01 mGy for the mean, and 1.32–2.55 mGy for the maximum. Similarly, when calculated using a median air kerma of 1.6 mGy as typically required for D-speed film, 2 the ranges for estimated annual air kerma across the devices were 0.28–1.54 mGy for the median, 0.83–2.03 mGy for the mean, and 2.64–5.10 mGy for the maximum. Conclusions: From measured air kerma values of stray radiation in the SZO, estimated annual exposures to the operator for HIDXDs are expected to be greater than from conventional wall-mounted or portable devices activated from a protected area (at a distance or behind shielding). HIDXDs should therefore only be used when patient accessibility makes their use necessary and the use of a portable device on a stand or a wall-mounted device is not reasonably feasible. This approach would keep occupational radiation exposures of dental workers as low as reasonably achievable.


1988 ◽  
Vol 3 (2) ◽  
pp. 84-85 ◽  
Author(s):  
D.M.A. Guérin ◽  
R.D. Bonetto ◽  
A.G. Alvarez

X-ray diffraction and neutron spectra present a peak assembly whose maxima are centered at angles corresponding to Bragg's law.Analysis of diffracted intensity profiles in each peak can be used to estimate such morphologic characteristics of the samples as preferred orientation (Brindley and Kurtosy, 1961; Martin, 1966); crystallite sizes (Scherrer, 1919; Warren and Averbach, 1950; Wilson, 1962; and Guérin et al., 1986); and crystal shapes (Wilson, 1949). Such analysis can also be used to estimate the determination of residual stress and lattice defects (Warren and Averbach, 1950; Wilson, 1963). In such studies, a detailed analysis of the diffraction distribution is required and consequently adjustment of intensity values must be carried out, as they are affected by systematic errors in the measuring apparatus (for detailed description, see Klug and Alexander, 1974 and Wilson 1967).


Sign in / Sign up

Export Citation Format

Share Document