Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness

2013 ◽  
Vol 6 (2) ◽  
pp. 228-233 ◽  
Author(s):  
Yun-Qing Cao ◽  
Xin Xu ◽  
Shu-Xin Li ◽  
Wei Li ◽  
Jun Xu ◽  
...  
2018 ◽  
Vol 32 (02) ◽  
pp. 1850003
Author(s):  
Xiaobo Chen ◽  
Peizhi Yang

Silicon quantum dots (Si-QDs) embedded B-doped SiN[Formula: see text] films were fabricated by magnetron co-sputtering. The effects of B content on the structural, optical and electrical properties of the films were studied. The study found that the amount of B dopant has no significant effect on the crystallization characteristics of the films. B atoms may be doped in the Si-QDs or exist in the silicon nitride or the interface between Si-QDs and the matrix. PL intensity increases with increasing B content, but increases at first and then decreases. The conductivity as a function of the dopant concentration increases at first from a value of 2.71 × 10[Formula: see text] S/cm to 5.83 × 10[Formula: see text] S/cm until 0.9 at.% and then decreases. By employing B-doped Si-QDs films, Si-QDs/c-Si heterojunction solar cells were fabricated and the effect of B doping concentration on the photovoltaic properties was studied. It was found that, with the increase of B doping amount, the photovoltaic performance is improved, when the B doping amount is 0.9 at.%, the efficiency reaches the highest value of 4.26%.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4845
Author(s):  
Yunqing Cao ◽  
Ping Zhu ◽  
Dongke Li ◽  
Xianghua Zeng ◽  
Dan Shan

Recently, extensive studies have focused on exploring a variety of silicon (Si) nanostructures among which Si quantum dots (Si QDs) may be applied in all Si tandem solar cells (TSCs) for the time to come. By virtue of its size tunability, the optical bandgap of Si QDs is capable of matching solar spectra in a broad range and thus improving spectral response. In the present work, size-controllable Si QDs are successfully obtained through the formation of Si QDs/SiC multilayers (MLs). According to the optical absorption measurement, the bandgap of Si QDs/SiC MLs shows a red shift to the region of long wavelength when the size of dots increases, well conforming to quantum confinement effect (QCE). Additionally, heterojunction solar cells (HSCs) based on Si QDs/SiC MLs of various sizes are presented and studied, which demonstrates the strong dependence of photovoltaic performance on the size of Si QDs. The measurement of external quantum efficiency (EQE) reveals the contribution of Si QDs to the response and absorption in the ultraviolet–visible (UV-Vis) light range. Furthermore, Si QDs/SiC MLs-based solar cell shows the best power conversion efficiency (PCE) of 10.15% by using nano-patterned Si light trapping substrates.


2016 ◽  
Vol 31 (9) ◽  
pp. 915 ◽  
Author(s):  
WANG Heng ◽  
ZHAI Guang-Mei ◽  
ZHANG Ji-Tao ◽  
YANG Yong-Zhen ◽  
LIU Xu-Guang ◽  
...  

2018 ◽  
Vol 36 (4) ◽  
pp. 668-674 ◽  
Author(s):  
Reşit Özmenteş ◽  
Cabir Temirci ◽  
Abdullah Özkartal ◽  
Kadir Ejderha ◽  
Nezir Yildirim

AbstractCopper(II) oxide (CuO) in powder form was evaporated thermally on the front surface of an n-Si (1 0 0) single crystal using a vacuum coating unit. Structural investigation of the deposited CuO film was made using X-ray difraction (XRD) and energy dispersive X-ray analysis (EDX) techniques. It was determined from the obtained results that the copper oxide films exhibited single-phase CuO properties in a monoclinic crystal structure. Transmittance measurement of the CuO film was performed by a UV-Vis spectrophotometer. Band gap energy of the film was determined as 1.74 eV under indirect band gap assumption. Current-voltage (I-V) measurements of the CuO/n-Si heterojunctions were performed under illumination and in the dark to reveal the photovoltaic and electrical properties of the produced samples. From the I-V measurements, it was revealed that the CuO/n-Si heterojunctions produced by thermal evaporation exibit excellent rectifying properties in dark and photovoltaic properties under illumination. Conversion efficiencies of the CuO/n-Si solar cells are comparable to those of CuO/n-Si produced by other methods described in the literature.


2013 ◽  
Vol 34 (2) ◽  
pp. 197-201
Author(s):  
尚明伟 SHANG Ming-wei ◽  
刘春廷 LIU Chun-ting ◽  
孙琼 SUN Qiong ◽  
张乾 ZHANG Qian ◽  
董红周 DONG Hong-zhou ◽  
...  

2015 ◽  
Vol 3 (17) ◽  
pp. 9264-9270 ◽  
Author(s):  
Hyun Bin Kim ◽  
Iseul Im ◽  
Yeomin Yoon ◽  
Sang Do Sung ◽  
Eunji Kim ◽  
...  

In a novel heterojunction solar cell employing CH3NH3PbBr3 (MAPbBr3) as the light absorber, the introduction of a carboxylate monolayer on the mesoporous TiO2 surfaces significantly enhances JSC as well as VOC.


Sign in / Sign up

Export Citation Format

Share Document