Enhancement of photovoltaic properties of CH3NH3PbBr3 heterojunction solar cells by modifying mesoporous TiO2 surfaces with carboxyl groups

2015 ◽  
Vol 3 (17) ◽  
pp. 9264-9270 ◽  
Author(s):  
Hyun Bin Kim ◽  
Iseul Im ◽  
Yeomin Yoon ◽  
Sang Do Sung ◽  
Eunji Kim ◽  
...  

In a novel heterojunction solar cell employing CH3NH3PbBr3 (MAPbBr3) as the light absorber, the introduction of a carboxylate monolayer on the mesoporous TiO2 surfaces significantly enhances JSC as well as VOC.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4667
Author(s):  
Laurentiu Fara ◽  
Irinela Chilibon ◽  
Ørnulf Nordseth ◽  
Dan Craciunescu ◽  
Dan Savastru ◽  
...  

This study is aimed at increasing the performance and reliability of silicon-based heterojunction solar cells with advanced methods. This is achieved by a numerical electro-optical modeling and reliability analysis for such solar cells correlated with experimental analysis of the Cu2O absorber layer. It yields the optimization of a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model. Experimental research of N-doped Cu2O thin films was dedicated to two main activities: (1) fabrication of specific samples by DC magnetron sputtering and (2) detailed characterization of the analyzed samples. This last investigation was based on advanced techniques: morphological (scanning electron microscopy—SEM and atomic force microscopy—AFM), structural (X-ray diffraction—XRD), and optical (spectroscopic ellipsometry—SE and Fourier-transform infrared spectroscopy—FTIR). This approach qualified the heterojunction solar cell based on cuprous oxide with nitrogen as an attractive candidate for high-performance solar devices. A reliability analysis based on Weibull statistical distribution establishes the degradation degree and failure rate of the studied solar cells under stress and under standard conditions.


2014 ◽  
Vol 16 (29) ◽  
pp. 15400-15410 ◽  
Author(s):  
Yiming Liu ◽  
Yun Sun ◽  
Wei Liu ◽  
Jianghong Yao

A novel high-efficiency c-Si heterojunction solar cell with using compound hetero-materials is proposed and denominated HCT (heterojunction with a compound thin-layer).


Author(s):  
Zhijie Zhang ◽  
Jing Lin ◽  
Peiye Sun ◽  
Qinghao Zeng ◽  
Xi Deng ◽  
...  

Two-dimensional (2D) material-based heterojunction solar cells have attracted significant interests due to their potential in low-cost photovoltaic applications. Herein, a novel MXene/GaAs heterojunction solar cell with high-efficiency and excellent stability...


2021 ◽  
Author(s):  
Chandan Yadav ◽  
sushil kumar

Abstract A maximum efficiency of 17% for ultra-thin n-type AZO layer and 17.5% for ultra-thin n-type TiO2 layer based silicon heterojunction solar cell is reported by optimizing its properties which is much higher than practically obtained efficiency signifying a lot of improvements can be performed to improve efficiency of TiO2/Si and AZO/Si heterojunction solar cell. AZO layer and TiO2 layer is used as n-type emitter layer and crystalline silicon wafer is used as p-type (p-cSi) layer for modelling AZO/Si and TiO2/Si heterojunctions solar cell respectively using AFORS HET automat simulation software. Various parameters like thickness of AZO, TiO2 layer, p-cSi layer, doping concentration of donors (Nd) and effective conduction band density (Nc) are optimized. Finally, texturing at different angle is studied and maximum efficiency is reported at 70 µm thick p-type crystalline Silicon (p-cSi) wafer, that can be very helpful for manufacturing low cost HJ solar cells at industrial scale because of thin wafer and removal of additional processing setup required for deposition of amorphous silicon i-layer. Utilization of TiO2 and Aluminium doped Zinc Oxide as n-type layer and p-cSi as p-type layer can help in producing low cost and efficient heterojunction (HJ) than compared to HJ with intrinsic thin layer HIT solar cells.


Nano Hybrids ◽  
2014 ◽  
Vol 8 ◽  
pp. 15-26
Author(s):  
M. Houshmand ◽  
M.H. Zandi ◽  
Nima E. Gorji

Recently, we considered the application of carbon nanotubes as the buffer layer between the CdS and Cu (In,Ga)Se2thin film solar cells. In this work the structure of a p-n heterojunction solar cell is analyzed including the single walled carbon nanotubes as the absorber and CdS as n-type semiconductor window layer. The interface and current-voltage characteristics of this proposed structure are studied exerting the general formulation of the p-n heterojunction solar cells proposed by Fonash. We propose that SWCNTs/CdS heterojunction solar cell can overlap with a main part of the sunlight spectrum leading to improve efficiency and short circuit current. The interesting property of such devices is that the light can inter to the device from the absorber as carbon nanotubes are transparent semiconductor nanostructures. The results of this study can be extended to graphene nanolayers as it has been extensively studied by the PV community in recent years.


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


2015 ◽  
Vol 12 (5) ◽  
pp. 413-420
Author(s):  
Muhammad Ahsan Naveed ◽  
A. Hussain ◽  
K. Islam ◽  
P. Akhter

Organic solar cells have potential as an alternative to conventional inorganic solar cell due to low processing cost, flexibility and easy fabrication technique. The goal of this paper is to study the characteristics of the CuPc and PCBM based organic solar cell by introducing a thin layer of Ag at the interface of donor (CuPc) and Acceptor (PCBM), their photovoltaic and optical properties were investigated. The heterojunction solar cells with and without silver inter layer were fabricated through thermal deposition in HR vacuum. The OPV solar cells were characterized using current-voltage graphs, absorbance spectrum and Impedance spectroscopy. Impedance spectroscopy was taken to identify the traps using series resistance, parallel resistance, and Impedance spectrums under different frequencies. Optical behaviors of these devices have been investigated with absorbance spectrum. Introducing Ag to interfacing point produced traps and these traps causes to decreased Voc, Isc, FF, and efficiency. The effect of silver layer at donor acceptor interface was studied.


2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


2021 ◽  
Author(s):  
Giuk Jeong ◽  
Seunghwan Ji ◽  
Ji Woon Choi ◽  
Gihun Jung ◽  
Byungha Shin

Sb2Se3, a quasi-1D structured binary chalcogenide, has great potential as a solar cell light absorber owing to its anisotropic carrier transport and benign grain boundaries when the absorber layer is...


Sign in / Sign up

Export Citation Format

Share Document