Numerical study on water depth effects on hydrodynamic forces acting on berthing ships

2017 ◽  
Vol 22 (2) ◽  
pp. 198-205
Author(s):  
Huaming Wang ◽  
Xue Sheng ◽  
Shilai Wang ◽  
Lin Chen ◽  
Zhiming Yuan ◽  
...  
2021 ◽  
Vol 152 ◽  
pp. 104174
Author(s):  
Ioana C. Stefanescu ◽  
Bryan N. Shuman ◽  
Jessica E. Tierney

Structures ◽  
2020 ◽  
Vol 28 ◽  
pp. 1435-1448
Author(s):  
Lixian Zhang ◽  
Constantine Michailides ◽  
Yapo Wang ◽  
Wei Shi

Author(s):  
Xiaofei Cheng ◽  
Yongxue Wang ◽  
Bing Ren ◽  
Guoyu Wang

In the paper, a 2D numerical model is established to simulate the hydrodynamic forces on a submarine piggyback pipeline under regular wave action. The two-dimensional Reynolds-averaged Navier-Stokes equations with a κ-ω turbulence model closure are solved by using a three-step Taylor-Galerkin finite element method (FEM). A Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method is employed to simulate free surface problems, which is inherently compatible with unstructured meshes and finite element method. The numerical results of in-line force and lift (transverse) force on the piggyback pipeline for e/D = G/D = 0.25 and KC = 25.1 are compared with physical model test results, which are conducted in a marine environmental flume in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. It is indicated that the numerical results coincide with the experimental results and that the numerical model can be used to predict the hydrodynamic forces on the piggyback pipeline under wave action. Based on the numerical model, the surface pressure distribution and the motion of vortices around the piggyback pipeline for e/D = G/D = 0.25, KC = 25.1 are investigated, and a characteristic vortex pattern around the piggyback pipeline denoted “anti-phase-synchronized” pattern is recognized.


Author(s):  
Kourosh Rezanejad ◽  
Joydip Bhattacharjee ◽  
C. Guedes Soares

In the present study, the performance of two chamber nearshore oscillating water columns (OWCs) in finite water depth is analyzed based on the linearized water wave theory in the two dimensional Cartesian coordinate systems. The barriers are assumed to be fixed and the turbine characteristics are assumed linear with respect to the fluctuations of volume flux and pressure inside the chamber. The free surface inside the chambers is modeled as a non-plane wave surface. Two different mathematical models are employed to solve the hydrodynamic problem; the semi-analytic method of matched eigenfunction expansion and the numerical scheme of Boundary Integral Equation Method (BIEM). The numerical results are compared with the semi-analytic results and show good agreement. The effects of the distance between the barriers and the length of the barriers on the efficiency of the OWC device are investigated. The results of two chambers OWC are also compared with the results for an equivalent single OWC chamber. Further, the effect of the water depth on the capacity of the wave power absorption is discussed.


2019 ◽  
Vol 42 (1) ◽  
pp. 42-48
Author(s):  
Chakib Bentalha ◽  
Mohammed Habi

Abstract Stepped spillway is hydraulic structure designed to dissipate the excess in kinetic energy at the downstream of dams and can reduce the size of stilling basin at the toe of the spillway or chute. The flow on a stepped spillway is characterised by the large aeration that can prevent or reduce the cavitation damage. The air entrainment starts where the boundary layer attains the free surface of flow; this point is called “point of inception”. Within this work the inception point is determined by using software Ansys Fluent where the volume of fluid (VOF) model is used as a tool to track the free surface thereby the turbulence closure is derived in the k − ε turbulence standard model. This research aims to find new formulas for describe the variation of water depth at step edge and the positions of the inception point, at the same time the contour map of velocity, turbulent kinetic energy and strain rate are presented. The found numerical results agree well with experimental results like the values of computed and measured water depth at the inception point and the numerical and experimental inception point locations. Also, the dimensionless water depth profile obtained by numerical method agrees well with that of measurement. This study confirmed that the Ansys Fluent is a robust software for simulating air entrainment and exploring more characteristics of flow over stepped spillways.


Author(s):  
Yu Lin ◽  
Ghassan El Chahal ◽  
Yanlin Shao

Abstract As the worldwide oil and gas market continues to grow and environmental concerns with respect to in-port offloading of gas have increased, there has been a boom of interest in new liquefied natural gas LNG terminals in the past years. Loading - offloading operations at LNG and bulk terminals are generally protected by a breakwater to ensure high operability. For these terminals, caisson breakwaters are generally a preferred solution in water depth larger than 15 m due to its advantages compared to rubble mound breakwaters. The caisson installation is generally planned to be carried out in the period where sea conditions are relatively calm. However, many of these terminal locations are exposed to swell conditions, making the installation particularly challenging and subject to large downtime. There is no clear guidance on the caisson installation process rather than contractors’ experiences from different projects/sites. Therefore, studies are required in order to provide general guidance on the range of acceptable wave conditions for the installation operations and to have a better understanding of the influence of the caisson geometry. This paper presents a numerical study to determine the limiting wave conditions for caisson installing operations at larger water depth of 30–35 m for a confidential project along the African coast. Three caisson sizes/geometries are considered in order to assess and compare the wave-structure hydrodynamic interaction. The linear frequency-domain hydrodynamic analysis is performed for various seastates to determine the limiting wave conditions. Viscous effects due to flow separation at the sharp edges of the caisson are considered by using a stochastic linearization approach, where empirical drag coefficients are used as inputs. Parametric studies on caisson size and mooring stiffness are also presented, which can be used as a basis for future optimization. The uncertainty in the applied empirical viscous drag coefficients taken from the literature is examined by using a range of different drag coefficients. Further, the use of clearance-independent hydrodynamic coefficients (e.g. added mass and damping) may be questionable when the caisson is very close to the seabed, due to a possible strong interaction between caisson bottom and seabed. This effect is also checked quantitatively by a simplified approach. The findings of the study are presented in the form of curves and generalized to be used by designers and contractors for general guidance in future projects.


Sign in / Sign up

Export Citation Format

Share Document