Numerical study on load transfer effect of Stiffened Deep Mixed column-supported embankment over soft soil

2016 ◽  
Vol 21 (3) ◽  
pp. 703-714 ◽  
Author(s):  
Guanbao Ye ◽  
Yongsheng Cai ◽  
Zhen Zhang
Author(s):  
KG. Thirugnanasambantham ◽  
T. Sankaramoorthy ◽  
Medagam Kesava Reddy ◽  
Mantri Pragada Venkata Sesha Aditya

2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Y. F. Zhang ◽  
J. Li ◽  
W. Li ◽  
J. M. Li ◽  
H. Y. Liu

Engineering practice shows that the deformation of the slide-resistant pile may be transferred to the adjacent bridge foundation on an inclined slope, which can compromise the safety of the entire bridge. However, this phenomenon has rarely been considered in the past. To reveal the deformation transfer mechanism between the slide-resistant pile and the adjacent structures, a full-scale field test was performed on a high and steep slope located in a section of a certain railway. A numerical analysis model was constructed to simulate the field test and validate its parameters. Moreover, parametric analysis was also conducted to examine the influence of the pile length, pile diameter, and arrangement of the pile foundation. The results show that the bridge pile foundation is simultaneously affected by the “load transfer effect” caused by the slide-resistant pile and “traction effect” of the sliding slope. With the distance between the pile foundation and the slide-resistant pile increasing, the dominant factor affecting the deformation mode of the pile body is switched from the “load transfer effect” to the “traction effect.” Furthermore, a critical embedment depth exists for the bridge pile foundation built on a high and steep slope, which varies at different locations along the inclined stratum. In addition, using a pile arrangement with a larger pile diameter and lower number of piles is more beneficial for controlling the horizontal displacement of the bridge foundation. The results of the research provide a reference for the safety control of the engineering on the high and steep slope.


2012 ◽  
Vol 476-478 ◽  
pp. 2634-2638
Author(s):  
Li Yan ◽  
Jun Sheng Yang

Geosynthetic-reinforced and pile-supported (GRPS) embankment systems have been emerged as an effective alternative successfully adopted worldwide to solve many geotechical problems. In the GRPS embankment system, a reinforced earth platform was lying above the piles and includes one or more layers of geosynthetics at the base of the embankment. The geosynsthetic reinforcement carries the lateral thrust from the embankment, creates a stiffened fill platform to enhance the load transfer from the soil to the piles, and reduce the differential settlement between pile caps. A numerical study was conducted to investigate the tension distribution of the geosynethic reinforcement in the GRPS embankment. Four influence factors were investigated, which included the elastic modulus of piles, the elastic modulus of soft soil, the tensile stiffness of geosynthetic reinforcement, and the number of geosynthetic layers. Numerical results suggested these four factors have different influence on the tension distribution and the maximum tension in the geosynthetic reinforcement.


2012 ◽  
Vol 594-597 ◽  
pp. 527-531
Author(s):  
Wan Qing Zhou ◽  
Shun Pei Ouyang

Based on the experimental study of rotary filling piles with large diameter subjected to axial load in deep soft soil, the bearing capacity behavior and load transfer mechanism were discussed. Results show that in deep soft soil foundation, the super–long piles behave as end-bearing frictional piles. The exertion of the shaft resistance is not synchronized. The upper layer of soil is exerted prior to the lower part of soil. Meanwhile, the exertion of shaft resistance is prior to the tip resistance. For the different soil and the different depth of the same layer of soil, shaft resistance is different.


2018 ◽  
Vol 195 ◽  
pp. 03014
Author(s):  
Siswoko Adi Saputro ◽  
Agus Setyo Muntohar ◽  
Hung Jiun Liao

Excessive settlement due to consolidation can cause damage to the structure’s rest on soft soil. The settlement takes place in relatively longer. The preloading and prefabricated vertical drain (PVD) is often applied to accelerate the primary settlement. The issue in this research is the estimation of the settlement. The Asaoka method and the finite element method using PLAXIS-2D are used to estimate the final settlement of a PVD treated embankment. For the former, a complete record of the settlement was required; for the latter, some ground parameters are needed for the PLAXIS-2D analysis, such as the permeability of the soil. Because the installation process of PVD tends to influence the permeability of the in-situ soil around the PVD, the soil permeability after the installation of PVD needs to be adjusted. The numerical results were compared with actual settlement data to find out the best-fit input parameters (i.e. soil permeability) of the actual data. It was found that the best-fit soil permeability (k) used in the numerical study was about one-half of the k value determined from the laboratory test. The Root Mean Square Deviation shows that the settlement predicted by the numerical analysis has approximately 30% of the actual settlement.


Sign in / Sign up

Export Citation Format

Share Document