Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using Teaching–learning-based Optimization

2017 ◽  
Vol 21 (6) ◽  
pp. 2281-2288 ◽  
Author(s):  
Umut Topal ◽  
Tayfun Dede ◽  
Hasan Tahsin Öztürk
Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1235
Author(s):  
Celal Cakiroglu ◽  
Kamrul Islam ◽  
Gebrail Bekdaş ◽  
Sanghun Kim ◽  
Zong Woo Geem

The stacking sequence optimization of laminated composite plates while maximizing the structural performance or minimizing the weight is a subject investigated extensively in the literature. Meanwhile, research on the optimization of laminates with cut-outs has been relatively limited. Cut-outs being an indispensable feature of structural components, this paper concentrates on the stacking sequence optimization of composite laminates in the presence of circular cut-outs. The buckling load of a laminate is used as a metric to quantify the structural performance. Here the laminates are modeled as carbon fiber-reinforced composites using the finite element analysis software, ABAQUS. For the optimization, the widely used harmony search algorithm is applied. In terms of design variables, ply thickness, and fiber orientation angles of the plies are used as continuously changing variables. In addition to the stacking sequence, another geometric variable to consider is the aspect ratio (ratio of the length of the longer sides to the length of the shorter sides of the plate) of the rectangular laminates. The optimization is carried out for three different aspect ratios. It is shown that, by using dispersed stacking sequences instead of the commonly used 0°/±45°/±90° fiber angle stacks, significantly higher buckling loads can be achieved. Furthermore, changing the cut-out geometry is found to have a significant effect on the structural performance.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
Emin Ergun

The aim of this study is to investigate, experimentally and numerically, the change of critical buckling load in composite plates with different ply numbers, orientation angles, stacking sequences and boundary conditions as a function of temperature. Buckling specimens have been removed from the composite plate with glass-fibre reinforcement at [0°]i and [45°]i (i= number of ply). First, the mechanical properties of the composite material were determined at different temperatures, and after that, buckling experiments were done for those temperatures. Then, numerical solutions were obtained by modelling the specimens used in the experiment in the Ansys10 finite elements package software. The experimental and numerical results are in very good agreement with each other. It was found that the values of the buckling load at [0°] on the composite plates are higher than those of other angles. Besides, symmetrical and anti-symmetrical conditions were examined to see the effect of the stacking sequence on buckling and only numerical solutions were obtained. It is seen that the buckling load reaches the highest value when it is symmetrical in the cross-ply stacking sequence and it is anti-symmetrical in the angle-ply stacking sequence.


2014 ◽  
Vol 709 ◽  
pp. 148-152
Author(s):  
Guo Qing Zhou ◽  
Ji Wang ◽  
Song Xiang

Sinusoidal shear deformation theory is presented to analyze the natural frequencies of simply supported laminated composite plates. The governing differential equations based on sinusoidal theory are solved by a Navier-type analytical method. The present results are compared with the available published results which verify the accuracy of sinusoidal theory.


Sign in / Sign up

Export Citation Format

Share Document