Flexible Foundation Effect on Seismic Analysis of Roller Compacted Concrete (RCC) Dams Using Finite Element Method

2018 ◽  
Vol 22 (4) ◽  
pp. 1275-1287 ◽  
Author(s):  
Khaled Ghaedi ◽  
Farzad Hejazi ◽  
Zainah Ibrahim ◽  
Parveen Khanzaei
2018 ◽  
Vol 171 ◽  
pp. 405-420 ◽  
Author(s):  
M.A. Hariri-Ardebili ◽  
S.M. Seyed-Kolbadi ◽  
V.E. Saouma ◽  
J. Salamon ◽  
B. Rajagopalan

2012 ◽  
Vol 535-537 ◽  
pp. 2027-2031 ◽  
Author(s):  
Jian Chun Wu ◽  
Rong Shi

Using dynamic elastic-plastic finite element method, on the base of works together and interaction between loess and flexible retaining wall, 3-D nonlinear FEM (ADINA) is used to analyze and discussed the dynamic response of slope protected by soil nailing retaining wall under the EL-Centro and man-made Lanzhou accelerogram. A model that is capable of simulating the nonlinear static and dynamic elastic-plastic behavior of soil is used to model the soil, and a bilinear elastic-plastic model that has hardening behavior is used to model the soil nailing. Friction-element is employed to describe the soil-structure interaction behavior.The results show that the method is safe and credible. The results of the FEM dynamic analysis can be a useful reference for engineers of the design and construction of the soil nailed wall.


2003 ◽  
Vol 30 (6) ◽  
pp. 1153-1156 ◽  
Author(s):  
Y L Chen ◽  
C J Wang ◽  
S Y Li ◽  
L J Chen

In this paper a numerical simulation of the construction process of roller compacted concrete (RCC) dams is presented. The following features of construction of mass concrete have been considered: hydration heat, age, placing temperature, starting placement date, and placing speed. A 3-D finite element model of the Long-Tan RCC dam, which is to be built in the Guangxi Autonomous Region in China, was analyzed. Temperature distribution and evolution inside the RCC dam were calculated during and after the completion of the dam. Using FortranTM code, a 3-D thermal simulation analysis of a high RCC dam can be realized on a computer at the construction site. Based on the real factors during the construction period, engineers can predict the distribution of temperature in the RCC dam. Therefore, engineers can take appropriate measures to control concrete temperature to reduce thermal stress within the dam. The effects of the concrete placing temperature, construction speed, and starting date on the temperature are discussed. It has been found that the maximum temperature in a dam can be reduced by 20% through temperature control measures.Key words: RCC dam, thermal simulation analysis, finite element method, temperature field, construction schedule.


2014 ◽  
Vol 668-669 ◽  
pp. 244-247
Author(s):  
Mei Huang ◽  
Yuan Yuan Zhao ◽  
Zhao Yang Xing ◽  
Hao Yuan ◽  
Jian Nan Tang

In this article, finite element method is used to analyze the properties of the reactor core under seismic load, and redesign the center assemblies to resist deformation and impact force. The result shows that the maximum force on the lug boss is decreased while the springs are applied.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Li ◽  
Zhijun Zhang ◽  
Yan Liu ◽  
Shengmei Yang

The lack of evaluation standard for safety coefficient based on finite element method (FEM) limits the wide application of FEM in roller compacted concrete dam (RCCD). In this paper, the strength reserve factor (SRF) method is adopted to simulate gradual failure and possible unstable modes of RCCD system. The entropy theory and catastrophe theory are used to obtain the ultimate bearing resistance and failure criterion of the RCCD. The most dangerous sliding plane for RCCD failure is found using the Latin hypercube sampling (LHS) and auxiliary analysis of partial least squares regression (PLSR). Finally a method for determining the evaluation standard of RCCD safety coefficient based on FEM is put forward using least squares support vector machines (LSSVM) and particle swarm optimization (PSO). The proposed method is applied to safety coefficient analysis of the Longtan RCCD in China. The calculation shows that RCCD failure is closely related to RCCD interface strength, and the Longtan RCCD is safe in the design condition. Considering RCCD failure characteristic and combining the advantages of several excellent algorithms, the proposed method determines the evaluation standard for safety coefficient of RCCD based on FEM for the first time and can be popularized to any RCCD.


Sign in / Sign up

Export Citation Format

Share Document