Compressive Strength, Hydration and Pore Structure of Alkali-Activated Slag Mortars Integrating with Recycled Concrete Powder as Binders

Author(s):  
Hao Wang ◽  
Liang Wang ◽  
Wenfeng Shen ◽  
Ke Cao ◽  
Lei Sun ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 593
Author(s):  
Haining Geng ◽  
Qing Xu ◽  
Saiful B. Duraman ◽  
Qiu Li

Pervious concrete is made of cementitious materials, coarse aggregate, water and additives, with characteristic macro- and meso-connected pore structure, which enables the acceptable mechanical properties and high water permeability for pavement and road applications. In this study, the effect of rheology of fresh alkali-activated slag paste on the sedimentation of paste on the bottom of pervious concrete, meso-structure, connected porosity, mechanical properties and water permeability was investigated by a range of analytical techniques through varying the equivalent alkali content to control the rheology of fresh paste in the pervious concrete. The compressive strength of pervious concrete was related to the percentage area of paste and the average thickness of paste on the surface of coarse aggregate. The tensile strength and water permeability were correlated to the connected porosity of pervious concrete and the rheology of fresh paste. A relative lower fluidity, higher viscosity and shear stress of fresh alkali-activated slag paste favoured lower sedimentation of paste on the bottom of pervious concrete, higher connected porosity, tensile strength and water permeability. There was no correlation between compressive strength and tensile strength of pervious concrete.


2021 ◽  
Vol 13 (14) ◽  
pp. 8017
Author(s):  
Hilal El-Hassan ◽  
Jamal Medljy ◽  
Tamer El-Maaddawy

Reutilizing industrial by-products and recycled concrete aggregates (RCA) to replace cement and natural aggregates (NA) in concrete is becoming increasingly important for sustainable development. Yet, experimental evidence is needed prior to the widespread use of this sustainable concrete by the construction industry. This study examines the performance of alkali-activated slag concrete made with RCA and reinforced with steel fibers. Natural coarse aggregates were replaced with RCA. Steel fibers were added to mixes incorporating RCA at different volume fractions. Desert dune sand was used as fine aggregate. The mechanical and durability properties of plain and steel fiber-reinforced concrete made with RCA were experimentally examined. The results showed that the compressive strength did not decrease in plain concrete mixes with 30 and 70% RCA replacement. However, full replacement of NA with RCA resulted in a 20% reduction in the compressive strength of the plain mix. In fact, 100% RCA mixes could only be produced with compressive strength comparable to that of an NA-based control mix in conjunction with 2% steel fiber, by volume. In turn, at least 1% steel fiber, by volume, was required to maintain comparable splitting tensile strength. Furthermore, RCA replacement led to higher water absorption and sorptivity and lower bulk resistivity, ultrasonic pulse velocity, and abrasion resistance. Steel fiber incorporation in RCA-based mixes densified the concrete and improved its resistance to abrasion, water permeation, and transport, thereby enhancing its mechanical properties to exceed that of the NA-based counterpart. The hardened properties were correlated to 28-day cylinder compressive strength through analytical regression models.


2021 ◽  
Vol 13 (4) ◽  
pp. 2407
Author(s):  
Guang-Zhu Zhang ◽  
Xiao-Yong Wang ◽  
Tae-Wan Kim ◽  
Jong-Yeon Lim ◽  
Yi Han

This study shows the effect of different types of internal curing liquid on the properties of alkali-activated slag (AAS) mortar. NaOH solution and deionized water were used as the liquid internal curing agents and zeolite sand was the internal curing agent that replaced the standard sand at 15% and 30%, respectively. Experiments on the mechanical properties, hydration kinetics, autogenous shrinkage (AS), internal temperature, internal relative humidity, surface electrical resistivity, ultrasonic pulse velocity (UPV), and setting time were performed. The conclusions are as follows: (1) the setting times of AAS mortars with internal curing by water were longer than those of internal curing by NaOH solution. (2) NaOH solution more effectively reduces the AS of AAS mortars than water when used as an internal curing liquid. (3) The cumulative heat of the AAS mortar when using water for internal curing is substantially reduced compared to the control group. (4) For the AAS mortars with NaOH solution as an internal curing liquid, compared with the control specimen, the compressive strength results are increased. However, a decrease in compressive strength values occurs when water is used as an internal curing liquid in the AAS mortar. (5) The UPV decreases as the content of zeolite sand that replaces the standard sand increases. (6) When internal curing is carried out with water as the internal curing liquid, the surface resistivity values of the AAS mortar are higher than when the alkali solution is used as the internal curing liquid. To sum up, both NaOH and deionized water are effective as internal curing liquids, but the NaOH solution shows a better performance in terms of reducing shrinkage and improving mechanical properties than deionized water.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


Sign in / Sign up

Export Citation Format

Share Document