scholarly journals The Effect of Different Types of Internal Curing Liquid on the Properties of Alkali-Activated Slag (AAS) Mortar

2021 ◽  
Vol 13 (4) ◽  
pp. 2407
Author(s):  
Guang-Zhu Zhang ◽  
Xiao-Yong Wang ◽  
Tae-Wan Kim ◽  
Jong-Yeon Lim ◽  
Yi Han

This study shows the effect of different types of internal curing liquid on the properties of alkali-activated slag (AAS) mortar. NaOH solution and deionized water were used as the liquid internal curing agents and zeolite sand was the internal curing agent that replaced the standard sand at 15% and 30%, respectively. Experiments on the mechanical properties, hydration kinetics, autogenous shrinkage (AS), internal temperature, internal relative humidity, surface electrical resistivity, ultrasonic pulse velocity (UPV), and setting time were performed. The conclusions are as follows: (1) the setting times of AAS mortars with internal curing by water were longer than those of internal curing by NaOH solution. (2) NaOH solution more effectively reduces the AS of AAS mortars than water when used as an internal curing liquid. (3) The cumulative heat of the AAS mortar when using water for internal curing is substantially reduced compared to the control group. (4) For the AAS mortars with NaOH solution as an internal curing liquid, compared with the control specimen, the compressive strength results are increased. However, a decrease in compressive strength values occurs when water is used as an internal curing liquid in the AAS mortar. (5) The UPV decreases as the content of zeolite sand that replaces the standard sand increases. (6) When internal curing is carried out with water as the internal curing liquid, the surface resistivity values of the AAS mortar are higher than when the alkali solution is used as the internal curing liquid. To sum up, both NaOH and deionized water are effective as internal curing liquids, but the NaOH solution shows a better performance in terms of reducing shrinkage and improving mechanical properties than deionized water.

2015 ◽  
Vol 1124 ◽  
pp. 145-150 ◽  
Author(s):  
Olesia Mikhailova ◽  
Pavel Rovnaník

Alkali-activated slag (AAS) binders have lower environmental impact due to its production process, but also have disadvantages as an increased shrinkage followed by formation of microcracks. The effect of polymer admixtures based on vinyl acetate, ethylene and acrylic acid ester, methyl metacrylate and different types of polyethylene glycol (PEG) and polypropylene glycol (PPG) on properties of alkali-activated slag concrete was studied. Admixtures used for mortars were tested to improve shrinkage, workability and compressive strength, flexural strength. The analysis also showed the effect of the admixtures on microstructure of the alkali-activated slag pastes and mortars.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Chen ◽  
Jun Wang ◽  
Jinyou Zhao

Extensive research into alkali-activated slag as a green gel material to substitute for cement has been done because of the advantages of low-carbon dioxide emissions and recycling of industrial solid waste. Alkali-activated slag usually has good mechanical properties, but the too fast setting time restricted its application and promotion. Changing the composition of alkaline activator could optimize setting time, usually making it by adding sodium carbonate or sodium sulfate but this would cause insufficient hydration reaction power and hinder compressive strength growth. In this paper, the effect of sodium aluminate dosage as an alkaline activator on the setting time, fluidity, compressive strength, hydration products, and microstructures was studied through experiments. It is fair to say that an appropriate amount of sodium aluminate could obtain a suitable setting time and better compressive strength. Sodium aluminate provided enough hydroxyl ions for the paste to promote the hydration reaction process that ensured obtaining high compressive strength and soluble aluminium formed precipitate wrapped on the surface of slag to inhibit the hydration reaction process in the early phase that prolonged setting time. The hydration mechanism research found that sodium aluminate played a key role in the formation of higher cross-linked gel hydration products in the late phase of the process. Preparing an alkali-activated slag with excellent mechanical properties and suitable setting time will significantly contribute to its application and promotion.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 593
Author(s):  
Haining Geng ◽  
Qing Xu ◽  
Saiful B. Duraman ◽  
Qiu Li

Pervious concrete is made of cementitious materials, coarse aggregate, water and additives, with characteristic macro- and meso-connected pore structure, which enables the acceptable mechanical properties and high water permeability for pavement and road applications. In this study, the effect of rheology of fresh alkali-activated slag paste on the sedimentation of paste on the bottom of pervious concrete, meso-structure, connected porosity, mechanical properties and water permeability was investigated by a range of analytical techniques through varying the equivalent alkali content to control the rheology of fresh paste in the pervious concrete. The compressive strength of pervious concrete was related to the percentage area of paste and the average thickness of paste on the surface of coarse aggregate. The tensile strength and water permeability were correlated to the connected porosity of pervious concrete and the rheology of fresh paste. A relative lower fluidity, higher viscosity and shear stress of fresh alkali-activated slag paste favoured lower sedimentation of paste on the bottom of pervious concrete, higher connected porosity, tensile strength and water permeability. There was no correlation between compressive strength and tensile strength of pervious concrete.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4318
Author(s):  
Pengju Wang ◽  
Haiming Chen ◽  
Peiyuan Chen ◽  
Jin Pan ◽  
Yangchen Xu ◽  
...  

Alkali activated slag (AAS) mortar is becoming an increasingly popular green building material because of its excellent engineering properties and low CO2 emissions, promising to replace ordinary Portland cement (OPC) mortar. However, AAS’s high shrinkage and short setting time are the important reasons to limit its wide application in engineering. This paper was conducted to investigate the effect of internal curing(IC) by super absorbent polymer (SAP) on the autogenous shrinkage of AAS mortars. For this, an experimental study was carried out to evaluate the effect of SAP dosage on the setting time, autogenous shrinkage, compressive strength, microstructure, and pore structure. The SAP were incorporated at different dosage of 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 percent by weight of slag. The workability, physical (porosity), mechanical, and shrinkage properties of the mortars were evaluated, and a complementary study on microstructure was made. The results indicated that the setting time increased with an increase of SAP dosage due to the additional activator released by SAP. Autogenous shrinkage decreased with an increase of SAP dosage, and was mitigated completely when the dosage of SAP ≥ 0.2% wt of slag. Although IC by means of SAP reduced the compressive strength, this reduction (23% at 56 days for 0.2% SAP) was acceptable given the important role that it played on mitigating autogenous shrinkage. In the research, the 0.2% SAP dosage was the optimal content. The results can provide data and basis for practical application of AAS mortar.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 718
Author(s):  
Guang-Zhu Zhang ◽  
Han-Seung Lee ◽  
Xiao-Yong Wang ◽  
Yi Han

This study clarifies the effects of pre-soaked zeolite sand as an internal curing material on the hydration, strength, autogenous shrinkage, and durability of alkali-activated slag (AAS) mortars. The liquid-to-binder ratio (L/b) of all of the AAS mortars was 0.55. Sodium hydroxide solution was used as an alkali activator and an internal curing liquid. Calcined zeolite and natural zeolite sand replaced the standard sand at 15% and 30%, respectively. The setting time, autogenous shrinkage, compressive strength, ultrasonic pulse velocity, and surface electrical resistivity were tested. The following conclusions were drawn: (1) The addition of zeolite significantly reduces the autogenous shrinkage of AAS mortar. Compared with the control group, 30% calcined zeolite reduced the autogenous shrinkage by 96.4%. Moreover, the autogenous shrinkage of the AAS mortars was noticed in two stages (a variable temperature stage and an ambient temperature stage), and the two stages split at one day of age. (2) The compressive strength of all of the specimens increased as the zeolite sand content increased, and the highest compressive strength was obtained for AAS combined with 30% natural zeolite sand. (3) Internal curing accelerated the formation of the second peak of heat flow and reduced the accumulated heat release. (4) Calcined zeolite sand delayed the setting time of the AAS mortars. (5) The addition of zeolite significantly reduced the surface electrical resistivity of the AAS mortars. In summary, zeolite sand is extremely useful as an internal curing agent to reduce autogenous shrinkage and to increase the compressive strength of AAS mortars.


2014 ◽  
Vol 1000 ◽  
pp. 118-121 ◽  
Author(s):  
Pavel Rovnaník ◽  
Patrik Bayer

Alkali-activated slag (AAS) is a material which has great potential for use in building industry. The aim of this work was to gain new superior properties by the addition of carbon nanotubes (CNTs). This material can act as a microreinforcement improving mechanical properties of cementitious materials. The effect of 0–1 wt.% addition of CNTs on the mechanical properties, hydration characteristics and microstructure of AAS binder was determined. The addition of CNTs delays the setting of the binder and a partial deterioration of strength parameters was observed.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


Sign in / Sign up

Export Citation Format

Share Document