scholarly journals Research on iron ore tailing improving Compressive Strength of Alkali-activated Slag Foamed concrete

Author(s):  
Junzhe Li ◽  
Yuze Tian ◽  
Qiubai Sun ◽  
Changsheng Pan
2021 ◽  
Vol 13 (4) ◽  
pp. 2407
Author(s):  
Guang-Zhu Zhang ◽  
Xiao-Yong Wang ◽  
Tae-Wan Kim ◽  
Jong-Yeon Lim ◽  
Yi Han

This study shows the effect of different types of internal curing liquid on the properties of alkali-activated slag (AAS) mortar. NaOH solution and deionized water were used as the liquid internal curing agents and zeolite sand was the internal curing agent that replaced the standard sand at 15% and 30%, respectively. Experiments on the mechanical properties, hydration kinetics, autogenous shrinkage (AS), internal temperature, internal relative humidity, surface electrical resistivity, ultrasonic pulse velocity (UPV), and setting time were performed. The conclusions are as follows: (1) the setting times of AAS mortars with internal curing by water were longer than those of internal curing by NaOH solution. (2) NaOH solution more effectively reduces the AS of AAS mortars than water when used as an internal curing liquid. (3) The cumulative heat of the AAS mortar when using water for internal curing is substantially reduced compared to the control group. (4) For the AAS mortars with NaOH solution as an internal curing liquid, compared with the control specimen, the compressive strength results are increased. However, a decrease in compressive strength values occurs when water is used as an internal curing liquid in the AAS mortar. (5) The UPV decreases as the content of zeolite sand that replaces the standard sand increases. (6) When internal curing is carried out with water as the internal curing liquid, the surface resistivity values of the AAS mortar are higher than when the alkali solution is used as the internal curing liquid. To sum up, both NaOH and deionized water are effective as internal curing liquids, but the NaOH solution shows a better performance in terms of reducing shrinkage and improving mechanical properties than deionized water.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


2019 ◽  
Vol 803 ◽  
pp. 262-266
Author(s):  
Osama Ahmed Mohamed ◽  
Maadoum M. Mustafa

Alkali activated slag (AAS) offers opportunities to the construction industry as an alternative to ordinary Portland cement (OPC). The production of OPC and its use contributes significantly to release of CO2 into the atmosphere while AAS is an industrial by-product that contributes much less to the environmental footprint that needs to be recycled if not landfilled. This paper outlines some of the key properties, merits and demerits of AAS when used as alternative to OPC. Competitive compressive strength of AAS concrete is amongst of the advantages of replacing cement with AAS while high shrinkage and carbonation levels are potential disadvantages.


2013 ◽  
Vol 712-715 ◽  
pp. 905-908
Author(s):  
Qun Pan ◽  
Bin Zhu ◽  
Xiao Huang ◽  
Lin Liu

Properties of alkali-activated slag cements compounded with soluble glasse with a high silicate modulus Ms=2.6 were detailedly studied in this paper, including compressive strength and flexure strength characterictics at the ages of 3,7,28 days and flow values of fresh cement mixtures on a jolting table. As a result, with the compressive strength at the age of 28 days of 95.6-107.8 MPa has been developed, and the flow values and strength characteristics of alkali-activated slag cement mortars increased with increase in a water to cement (alkaline activator solution to slag) ratio, and the flow value (determined on the cement mortar mixtures) would reach 145 mm. Moreover, the development speed of strength characteristics of mortar specimens would be affected negatively by increasing of water demand (requirement).


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Chen ◽  
Jun Wang ◽  
Jinyou Zhao

Extensive research into alkali-activated slag as a green gel material to substitute for cement has been done because of the advantages of low-carbon dioxide emissions and recycling of industrial solid waste. Alkali-activated slag usually has good mechanical properties, but the too fast setting time restricted its application and promotion. Changing the composition of alkaline activator could optimize setting time, usually making it by adding sodium carbonate or sodium sulfate but this would cause insufficient hydration reaction power and hinder compressive strength growth. In this paper, the effect of sodium aluminate dosage as an alkaline activator on the setting time, fluidity, compressive strength, hydration products, and microstructures was studied through experiments. It is fair to say that an appropriate amount of sodium aluminate could obtain a suitable setting time and better compressive strength. Sodium aluminate provided enough hydroxyl ions for the paste to promote the hydration reaction process that ensured obtaining high compressive strength and soluble aluminium formed precipitate wrapped on the surface of slag to inhibit the hydration reaction process in the early phase that prolonged setting time. The hydration mechanism research found that sodium aluminate played a key role in the formation of higher cross-linked gel hydration products in the late phase of the process. Preparing an alkali-activated slag with excellent mechanical properties and suitable setting time will significantly contribute to its application and promotion.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fu Bo ◽  
Cheng Zhenyun

In order to investigate the effect of Cr6+ on the properties of alkali-activated slag cement (AAS), the effects of added dosage of Na2Cr2O4 on the setting time and compressive strength of AAS were measured. The leaching concentration of Cr6+ from AAS cement stone was measured using dual-beam UV-visible spectrophotometry. The effect of Na2Cr2O4 on the hydration kinetics of AAS cement was monitored by microcalorimetry and the corresponding kinetic parameters were analyzed. The pore solution from AAS was collected and analyzed using the high pressure press method. The effects of Na2Cr2O4 on the hydration products of AAS cement were observed and compared using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results showed that the AAS hydration process was markedly affected by Na2Cr2O4 dosage. The setting time of AAS pastes was increased and the compressive strength of cement stones was reduced with increasing dosage of Na2Cr2O4. With the development of AAS hydration, the leaching concentration of Na2Cr2O4 gradually decreased. Na2Cr2O4 did not affect the dissolution of slag particles, but impeded the formation of C-S-H gel. The Cr6+ was immobilized chemically in the form of needle-like CaCrO4 particles formed by the chemical reaction between Na2Cr2O4 and Ca2+ leaching from the slag.


Sign in / Sign up

Export Citation Format

Share Document