Large eddy simulation of flow characteristics in an unconfined slot impinging jet with various nozzle-to-plate distances

2011 ◽  
Vol 25 (3) ◽  
pp. 721-729 ◽  
Author(s):  
Hongyun So ◽  
Hyun Gi Yoon ◽  
Myung Kyoon Chung
Author(s):  
Mehrdad Shademan ◽  
Vesselina Roussinova ◽  
Ron Barron ◽  
Ram Balachandar

Large Eddy Simulation (LES) has been carried out to study the flow of a turbulent impinging jet with large nozzle height-to-diameter ratio. The dynamic Smagorinsky model was used to simulate the subgrid-scale stresses. The jet exit Reynolds number is 28,000. The study presents a detailed evaluation of the flow characteristics of an impinging jet with nozzle height of 20 diameters above the plate. Results of the mean normalized centerline velocity and wall shear stress show good agreement with previous experiments. Analysis of the flow field shows that vortical structures generated due to the Kelvin-Helmholtz instabilities in the shear flow close to the nozzle undergo break down or merging when moving towards the plate. Unlike impinging jets with small stand-off distance where the ring-like vortices keep their interconnected shape upon reaching the plate, no sign of interconnection was observed on the plate for this large stand-off distance. A large deflection of the jet axis was observed for this type of impinging jet when compared to the cases with small nozzle height-to-diameter ratios.


2020 ◽  
Vol 8 (9) ◽  
pp. 728
Author(s):  
Said Alhaddad ◽  
Lynyrd de Wit ◽  
Robert Jan Labeur ◽  
Wim Uijttewaal

Breaching flow slides result in a turbidity current running over and directly interacting with the eroding, submarine slope surface, thereby promoting further sediment erosion. The investigation and understanding of this current are crucial, as it is the main parameter influencing the failure evolution and fate of sediment during the breaching phenomenon. In contrast to previous numerical studies dealing with this specific type of turbidity currents, we present a 3D numerical model that simulates the flow structure and hydrodynamics of breaching-generated turbidity currents. The turbulent behavior in the model is captured by large eddy simulation (LES). We present a set of numerical simulations that reproduce particular, previously published experimental results. Through these simulations, we show the validity, applicability, and advantage of the proposed numerical model for the investigation of the flow characteristics. The principal characteristics of the turbidity current are reproduced well, apart from the layer thickness. We also propose a breaching erosion model and validate it using the same series of experimental data. Quite good agreement is observed between the experimental data and the computed erosion rates. The numerical results confirm that breaching-generated turbidity currents are self-accelerating and indicate that they evolve in a self-similar manner.


2020 ◽  
Vol 32 (9) ◽  
pp. 095116
Author(s):  
Shashikant Pawar ◽  
Devendra Kumar Patel ◽  
Mukul Bisoi ◽  
Subhransu Roy

Author(s):  
Ying Huai ◽  
Amsini Sadiki

In this work, Large Eddy Simulation (LES) has been carried out to analyze the turbulent mixing processes in an impinging jet configuration. To characterize and quantify turbulent mixing processes, in terms of scalar structures and degree of mixing, three parameters have been basically introduced. They are “mixedness parameter”, which represents the probability of mixed fluids in computational domain, the Spatial Mixing Deficiency (SMD) and the Temporal Mixing Deficiency (TMD) parameters for characterizing the mixing at different scalar scale degrees. With help of these parameters, a general mixing optimization procedure has then been suggested and achieved in an impinging jet configuration. An optimal jet angle was estimated and the overall mixing degree with this jet angle reached around six times more than the original design. It turns out that the proposed idea and methodology can be helpful for practical engineering design processes.


Sign in / Sign up

Export Citation Format

Share Document