Data-driven prognostics method for turbofan engine degradation using hybrid deep neural network

2021 ◽  
Vol 35 (12) ◽  
pp. 5371-5387
Author(s):  
Bin Xue ◽  
Zhong-bin Xu ◽  
Xing Huang ◽  
Peng-cheng Nie
2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Omar Nassef ◽  
Toktam Mahmoodi ◽  
Foivos Michelinakis ◽  
Kashif Mahmood ◽  
Ahmed Elmokashfi

This paper presents a data driven framework for performance optimisation of Narrow-Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time configurations to user equipment communicating with a base station. Suggested configurations are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput or a combination of those metrics, depending on the user-end device and the application. Reinforcement learning utilising gradient descent and genetic algorithm is adopted synchronously with machine and deep learning algorithms to predict the environmental states and suggest an optimal configuration. The results highlight the adaptability of the Deep Neural Network in the prediction of intermediary environmental states, additionally the results present superior performance of the genetic reinforcement learning algorithm regarding its performance optimisation.


2020 ◽  
Author(s):  
Reza Torabi ◽  
Serena Jenkins ◽  
Allonna Harker ◽  
Ian Q. Whishaw ◽  
Robbin Gibb ◽  
...  

We present a deep neural network for data-driven analyses of infant rat behavior in an open field task. The network was applied to study the effect of maternal nicotine exposure prior to conception on offspring motor development. The neural network outperformed human expert designed animal locomotion measures in distinguishing rat pups born to nicotine exposed dams versus control dams. Notably, the network discovered novel movement alterations in posture, movement initiation and a stereotypy in warm-up behavior (the initiation of movement along specific dimensions) that were predictive of nicotine exposure. The results suggest that maternal preconception nicotine exposure delays and alters offspring motor development. In summary, we demonstrated that a deep neural network can automatically assess animal behavior with high accuracy, and that it offers a data-driven approach to investigating pharmacological effects on brain development.


Author(s):  
Huixin Yang ◽  
Xiang Li ◽  
Wei Zhang

Abstract Despite the rapid development of deep learning-based intelligent fault diagnosis methods on rotating machinery, the data-driven approach generally remains a "black box" to researchers, and its internal mechanism has not been sufficiently understood. The weak interpretability significantly impedes further development and applications of the effective deep neural network-based methods. This paper contributes efforts to understanding the mechanical signal processing of deep learning on the fault diagnosis problems. The diagnostic knowledge learned by the deep neural network is visualized using the neuron activation maximization and the saliency map methods. The discriminative features of different machine health conditions are intuitively observed. The relationship between the data-driven methods and the well-established conventional fault diagnosis knowledge is confirmed by the experimental investigations on two datasets. The results of this study can benefit researchers on understanding the complex neural networks, and increase the reliability of the data-driven fault diagnosis model in the real engineering cases.


2019 ◽  
Vol 50 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Kanghyun Ryu ◽  
Yoonho Nam ◽  
Sung‐Min Gho ◽  
Jinhee Jang ◽  
Ho‐Joon Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document