Manufacturing Optimization and Experimental Investigation of Ex-situ Core-shell Particles Toughened Carbon/Elium® Thermoplastic Composites

Author(s):  
Somen K. Bhudolia ◽  
Goram Gohel ◽  
Sunil C. Joshi ◽  
Kah Fai Leong
2021 ◽  
Author(s):  
◽  
Michelle Jane Cook

<p>Technology developed at Victoria University of Wellington by Professor James H. Johnston and Dr Kerstin Lucas allows for the colouring of high quality wool fibres using spherical gold nanoparticles. Gold nanoparticles have interesting colours and optical properties due to surface plasmon resonance effects and, using this technology, a boutique range of colours can be imparted onto wool fibres. The colour of gold nanoparticles is determined by their size and shape, hence the colour range achievable using spherical nanoparticles is limited to those obtained by changing the particle diameter and degree of aggregation of these particles. This limitation can be overcome by using gold nanoparticles of different shapes in conjunction with other materials. This research details the synthesis and characterisation of gold nanoshells on spherical silica cores and their use for the colouring of wool. Silica cores were used in this research as they are reasonably chemically inert and so serve as a stable substrate for the gold shells. Silica spheres are also easily prepared in a manner that allows control over the final particle diameter.  Several syntheses of these core-shell particles have been previously devised however they are not suitable for commercial use. Such syntheses involve many time-consuming steps, high temperatures or light-sensitive reagents. Synthetic methods set out in this research involve a novel in-situ seeding of gold nanoparticles for the growth of the shells eliminating the step of growing gold nanoparticles ex-situ commonly involved in other synthetic schemes. The need for light-sensitive reducing agents is eliminated by the use of other reductants such as sodium borohydride and hydroxylamine. All steps of the synthetic schemes are carried out at less than 100 °C. Several methods of synthesising core-shell particles are outlined in this research, which achieved varying degrees of success. Many syntheses investigated successfully produced core-shell particles but also left many silica spheres without the desired gold shell coating. This was not a problem for the proposed application of colouring wool. As silica is easily dispersed in water and does not have the same affinity to bind to wool as gold does, the silica spheres without gold shells simply wash off after colouring. This allowed the core-shell particles synthesised in this research to be successfully used to colour wool fibres and achieve a shade of purple not previously obtained using the earlier methodologies.</p>


2021 ◽  
Author(s):  
◽  
Michelle Jane Cook

<p>Technology developed at Victoria University of Wellington by Professor James H. Johnston and Dr Kerstin Lucas allows for the colouring of high quality wool fibres using spherical gold nanoparticles. Gold nanoparticles have interesting colours and optical properties due to surface plasmon resonance effects and, using this technology, a boutique range of colours can be imparted onto wool fibres. The colour of gold nanoparticles is determined by their size and shape, hence the colour range achievable using spherical nanoparticles is limited to those obtained by changing the particle diameter and degree of aggregation of these particles. This limitation can be overcome by using gold nanoparticles of different shapes in conjunction with other materials. This research details the synthesis and characterisation of gold nanoshells on spherical silica cores and their use for the colouring of wool. Silica cores were used in this research as they are reasonably chemically inert and so serve as a stable substrate for the gold shells. Silica spheres are also easily prepared in a manner that allows control over the final particle diameter.  Several syntheses of these core-shell particles have been previously devised however they are not suitable for commercial use. Such syntheses involve many time-consuming steps, high temperatures or light-sensitive reagents. Synthetic methods set out in this research involve a novel in-situ seeding of gold nanoparticles for the growth of the shells eliminating the step of growing gold nanoparticles ex-situ commonly involved in other synthetic schemes. The need for light-sensitive reducing agents is eliminated by the use of other reductants such as sodium borohydride and hydroxylamine. All steps of the synthetic schemes are carried out at less than 100 °C. Several methods of synthesising core-shell particles are outlined in this research, which achieved varying degrees of success. Many syntheses investigated successfully produced core-shell particles but also left many silica spheres without the desired gold shell coating. This was not a problem for the proposed application of colouring wool. As silica is easily dispersed in water and does not have the same affinity to bind to wool as gold does, the silica spheres without gold shells simply wash off after colouring. This allowed the core-shell particles synthesised in this research to be successfully used to colour wool fibres and achieve a shade of purple not previously obtained using the earlier methodologies.</p>


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1201
Author(s):  
Xinghua Ji ◽  
Cheng Zhang ◽  
Shufeng Li

SiCp reinforced aluminium matrix composites (AMCs), which are widely used in the aerospace, automotive, and electronic packaging fields along with others, are usually prepared by ex situ techniques. However, interfacial contamination and poor wettability of the ex situ techniques make further improvement in their comprehensive performance difficult. In this paper, SiCp reinforced AMCs with theoretical volume fractions of 15, 20, and 30% are prepared by powder metallurgy and in situ reaction via an Al-Si-C system. Moreover, a combined method of external addition and an in situ method is used to investigate the synergistic effect of ex situ and in situ SiCp on AMCs. SiC particles can be formed by an indirect reaction: 4Al + 3C → Al4C3 and Al4C3 + 3Si → 3SiC + 4Al. This reaction is mainly through the diffusion of Si, in which Si diffuses around Al4C3 and then reacts with Al4C3 to form SiCp. The in situ SiC particles have a smooth boundary, and the particle size is approximately 1–3 μm. A core-shell structure having good bonding with an aluminium matrix was generated, which consists of an ex situ SiC core and an in situ SiC shell with a thickness of 1–5 μm. The yield strength and ultimate tensile strength of in situ SiCp reinforced AMCs can be significantly increased with a constant ductility by adding 5% ex situ SiCp for Al-28Si-7C. The graphite particle size has a significant effect on the properties of the alloy. A criterion to determine whether Al4C3 is a complete reaction is achieved, and the forming mechanism of the core-shell structure is analysed.


2008 ◽  
Vol 20 (4) ◽  
pp. 1292-1298 ◽  
Author(s):  
M. P. L. Werts ◽  
M. Badila ◽  
C. Brochon ◽  
A. Hébraud ◽  
G. Hadziioannou

Nano Letters ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 2140-2149 ◽  
Author(s):  
Maria E. Stournara ◽  
Yue Qi ◽  
Vivek B. Shenoy

2016 ◽  
Vol 8 (15) ◽  
pp. 3061-3068 ◽  
Author(s):  
Christina Meisenbichler ◽  
Julia S. Rauch ◽  
Yüksel Güzel ◽  
Eva-Maria Wernig ◽  
Dieter Schemeth ◽  
...  

Selective enrichment of phosphorylated peptides by magnetic ytterbium oxide core-shell particles.


2005 ◽  
Vol 84 (1-3) ◽  
pp. 254-260 ◽  
Author(s):  
Jimin Du ◽  
Zhimin Liu ◽  
Buxing Han ◽  
Zhonghao Li ◽  
Jianling Zhang ◽  
...  

2007 ◽  
Vol 104 (2) ◽  
pp. 1195-1199 ◽  
Author(s):  
Jing Wang ◽  
Ya-qing Feng ◽  
Jun-wei Guo ◽  
Yu-kun Li ◽  
Xiang-gao Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document