Neutrophil infiltration in co-housed littermates plays a key role in nasal transmission of Streptococcus pneumoniae in an infant mouse model

Author(s):  
Fumie Kaneko ◽  
Masamitsu Kono ◽  
Hiroshi Sunose ◽  
Muneki Hotomi
mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Tonia Zangari ◽  
Yang Wang ◽  
Jeffrey N. Weiser

ABSTRACT Epidemiological studies on Streptococcus pneumoniae show that rates of carriage are highest in early childhood and that the major benefit of the pneumococcal conjugate vaccine (PCV) is a reduction in the incidence of nasopharyngeal colonization through decreased transmission within a population. In this study, we sought to understand how anti- S. pneumoniae immunity affects nasal shedding of bacteria, the limiting step in experimental pneumococcal transmission. Using an infant mouse model, we examined the role of immunity (passed from mother to pup) on shedding and within-litter transmission of S. pneumoniae by pups infected at 4 days of life. Pups from both previously colonized immune and PCV-vaccinated mothers had higher levels of anti- S. pneumoniae IgG than pups from non-immune or non-vaccinated mothers and shed significantly fewer S. pneumoniae over the first 5 days of infection. By setting up cross-foster experiments, we demonstrated that maternal passage of antibody to pups either in utero or post-natally decreases S. pneumoniae shedding. Passive immunization experiments showed that type-specific antibody to capsular polysaccharide is sufficient to decrease shedding and that the agglutinating function of immunoglobulin is required for this effect. Finally, we established that anti-pneumococcal immunity and anti-PCV vaccination block host-to-host transmission of S. pneumoniae . Moreover, immunity in either the donor or recipient pups alone was sufficient to reduce rates of transmission, indicating that decreased shedding and protection from acquisition of colonization are both contributing factors. Our findings provide a mechanistic explanation for the reduced levels of S. pneumoniae transmission between hosts immune from prior exposure and among vaccinated children. IMPORTANCE Rates of carriage of the bacterial pathogen Streptococcus pneumoniae are highest among young children, and this is the target group for the pneumococcal conjugate vaccine (PCV). Epidemiological studies have suggested that a major benefit of the PCV is a reduction in host-to-host transmission, which also protects the non-vaccinated population (“herd immunity”). In this study, we examined the role of anti-pneumococcal immunity on nasal shedding and transmission of the pathogen using an infant mouse model. We found that shedding is decreased and transmission is blocked by anti-pneumococcal immunity and PCV vaccination. Additionally, transmission rates decreased if either the infected or contact pups were immune, indicating that reduced shedding and protection from the establishment of colonization are both contributing factors. Our study provides a mechanistic explanation for the herd immunity effect seen after the introduction of PCV and identifies potential points of intervention, which may have implications for future vaccine development.


2022 ◽  
Author(s):  
Hideki Sakatani ◽  
Masamitsu Kono ◽  
Denisa Nanushaj ◽  
Daichi Murakami ◽  
Saori Takeda ◽  
...  

We established an infant mouse model for colonization and transmission by nonencapsulated Streptococcus pneumoniae (NESp) strains to gain important information about its virulence among children. Invasive pneumococcal diseases have decreased dramatically since the worldwide introduction of pneumococcal capsular polysaccharide vaccines. Increasing prevalence of non-vaccine serotypes including NESp has been highlighted as a challenge in treatment strategy, but the virulence of NESp is not well understood. Protective strategy against NESp colonization and transmission between children require particularly urgent evaluation. NESp lacks capsules, a major virulent factor of pneumococci, but can cause a variety of infections in children and older people. PspK, a specific surface protein of NESp, is a key factor in establishing nasal colonization. In our infant mouse model for colonization and transmission by NESp strains, NESp could establish stable nasal colonization at the same level as encapsulated serotype 6A in infant mice, and could be transmitted between littermates. Transmission was promoted by NESp surface virulence factor PspK and influenza virus co-infection. However, PspK-deletion mutants lost the ability to colonize and transmit to new hosts. Promotion of NESp transmission by influenza was due to increased susceptibility of the new hosts. PspK was a key factor not only in establishment of nasal colonization, but also in transmission to new hosts. PspK may be targeted as a new candidate vaccine for NESp infection in children.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
M. Ammar Zafar ◽  
Shigeto Hamaguchi ◽  
Tonia Zangari ◽  
Michael Cammer ◽  
Jeffrey N. Weiser

ABSTRACT The capsular polysaccharide (CPS) of Streptococcus pneumoniae is characterized by its diversity, as it has over 95 known serotypes, and the variation in its thickness as it surrounds an organism. While within-host effects of CPS have been studied in detail, there is no information about its contribution to host-to-host transmission. In this study, we used an infant mouse model of intralitter transmission, together with isogenic capsule switch and cps promoter switch constructs, to explore the effects of CPS type and amount. The determining factor in the transmission rate in this model is the number of pneumococci shed in nasal secretions by colonized hosts. Two of seven capsule switch constructs showed reduced shedding. These constructs were unimpaired in colonization and expressed capsules similar in size to those of the wild-type strain. A cps promoter switch mutant expressing ~50% of wild-type amounts of CPS also displayed reduced shedding without a defect in colonization. Since shedding from the mucosal surface may require escape from mucus entrapment, a mucin-binding assay was used to compare capsule switch and cps promoter switch mutants. The CPS type or amount constructs that shed poorly were bound more robustly by immobilized mucin. These capsule switch and cps promoter switch constructs with increased mucin-binding affinity and reduced shedding also had lower rates of pup-to-pup transmission. Our results demonstrate that CPS type and amount affect transmission dynamics and may contribute to the marked differences in prevalence among pneumococcal types. IMPORTANCE Streptococcus pneumoniae, a leading cause of morbidity and mortality, is readily transmitted, especially among young children. Its structurally and antigenically diverse capsular polysaccharide is the target of currently licensed pneumococcal vaccines. Epidemiology studies show that only a subset of the >95 distinct serotypes are prevalent in the human population, suggesting that certain capsular polysaccharide types might be more likely to be transmitted within the community. Herein, we used an infant mouse model to show that both capsule type and amount are important determinants in the spread of pneumococci from host to host. Transmission rates correlate with those capsule types that are better at escaping mucus entrapment, a key step in exiting the host upper respiratory tract. Hence, our study provides a better mechanistic understanding of why certain pneumococcal serotypes are more common in the human population. IMPORTANCE Streptococcus pneumoniae, a leading cause of morbidity and mortality, is readily transmitted, especially among young children. Its structurally and antigenically diverse capsular polysaccharide is the target of currently licensed pneumococcal vaccines. Epidemiology studies show that only a subset of the >95 distinct serotypes are prevalent in the human population, suggesting that certain capsular polysaccharide types might be more likely to be transmitted within the community. Herein, we used an infant mouse model to show that both capsule type and amount are important determinants in the spread of pneumococci from host to host. Transmission rates correlate with those capsule types that are better at escaping mucus entrapment, a key step in exiting the host upper respiratory tract. Hence, our study provides a better mechanistic understanding of why certain pneumococcal serotypes are more common in the human population.


2016 ◽  
Vol 84 (9) ◽  
pp. 2714-2722 ◽  
Author(s):  
M. Ammar Zafar ◽  
Masamitsu Kono ◽  
Yang Wang ◽  
Tonia Zangari ◽  
Jeffrey N. Weiser

One of the least understood aspects of the bacteriumStreptococcus pneumoniae(pneumococcus) is its transmission from host to host, the critical first step in both the carrier state and the disease state. To date, transmission models have depended on influenza A virus coinfection, which greatly enhances pneumococcal shedding to levels that allow acquisition by a new host. Here, we describe an infant mouse model that can be utilized to study pneumococcal colonization, shedding, and transmission during bacterial monoinfection. Using this model, we demonstrated that the level of bacterial shedding is highest in pups infected intranasally at age 4 days and peaks over the first 4 days postchallenge. Shedding results differed among isolates of five different pneumococcal types. Colonization density was found to be a major factor in the level of pneumococcal shedding and required expression of capsule. Transmission within a litter occurred when there was a high ratio of colonized “index” pups to uncolonized “contact” pups. Transmission was observed for each of the well-colonizing pneumococcal isolates, with the rate of transmission proportional to the level of shedding. This model can be used to examine bacterial and host factors that contribute to pneumococcal transmission without the effects of viral coinfection.


2020 ◽  
Author(s):  
Marvin Rüger ◽  
Eugenia Kipp ◽  
Nadine Schubert ◽  
Nicole Schröder ◽  
Thomas Pufe ◽  
...  

Abstract BackgroundBacterial meningitis is, despite progress in research and the development of new treatment strategies, still a cause of severe neurological disability. The brain is protected from penetrating pathogens by the blood-brain barrier and the innate immune system. The invading pathogens are recognized by pattern recognition receptors including the G-protein coupled formyl peptide receptors (FPRs), which are expressed by immune cells of the central nervous system. FPRs show a broad spectrum of ligands including pro- and anti-inflammatory ones. Here, we investigated the effects of the AnnexinA1 mimetic peptide Ac2-26 in a mouse model of pneumococcal meningitis.MethodsWildtype (WT), Fpr1 and Fpr2-deficient mice were intrathecally infected with Streptococcus pneumoniae D39 (type 2). Subsequently, the different mice groups were treated by intraperitoneal injections of Ac2-26 (1 mg/kg body weight) 2, 8 and 24 hour after the infection. The extent of inflammation was analyzed in various brain regions by means of immunohistochemistry and real-time RT-PCR 30 h after infection.ResultsAc2-26 treated mice showed less severe neutrophil infiltration, paralleled by a reduced induction of pro-inflammatory glia cell responses. While meningitis was ameliorated in Ac2-26-treated Fpr1-deficient mice, this protective effect was not observed in Fpr2-deficient mice.ConclusionsEven with appropriate antimicrobial therapy, mortality during bacterial meningitis is high and so attention has recently focused on adjunctive therapies. Our results suggest that Ac2-26 might be a novel adjunctive therapy for Streptococcus pneumoniae-induced meningitis.* The two last authors contributed equally to this study.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Kirsty R. Short ◽  
Patrick C. Reading ◽  
Nancy Wang ◽  
Dimitri A. Diavatopoulos ◽  
Odilia L. Wijburg

ABSTRACTThe transmission of the bacteriumStreptococcus pneumoniae(the pneumococcus) marks the first step toward disease development. To date, our ability to prevent pneumococcal transmission has been limited by our lack of understanding regarding the factors which influence the spread of this pathogen. We have previously developed an infant mouse model of pneumococcal transmission which was strictly dependent on influenza A virus (IAV) coinfection of both the experimentally colonized “index mice” and the naive cohoused “contact mice.” Here, we sought to use this model to further elucidate the factors which facilitateS. pneumoniaetransmission. In the present report, we demonstrate that increasing the nasopharyngeal load ofS. pneumoniaein the colonized index mice (via the depletion of neutrophils) and inducing a proinflammatory response in the naive cohoused contact mice (as demonstrated by cytokine production) facilitatesS. pneumoniaetransmission. Thus, these data provide the first insights into the factors that help mediate the spread ofS. pneumoniaethroughout the community.IMPORTANCEStreptococcus pneumoniae(the pneumococcus) is a major cause of worldwide morbidity and mortality and is a leading cause of death among children under the age of five years. Transmission ofS. pneumoniaemarks the first step toward disease development. Therefore, understanding the factors that influence the spread of pneumococci throughout the community plays an essential role in preventing pneumococcal disease. We previously developed the first reproducible infant mouse model for pneumococcal transmission and showed that coinfection with influenza virus facilitates the spread ofS. pneumoniae. Here, we show that increasing the bacterial load in the nasal cavity of colonized individuals as well as inducing an inflammatory response in naive “contact cases” facilitates the spread of pneumococci. Therefore, this study helps to identify the factors which must be inhibited in order to successfully prevent pneumococcal disease.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Marvin Rüger ◽  
Eugenia Kipp ◽  
Nadine Schubert ◽  
Nicole Schröder ◽  
Thomas Pufe ◽  
...  

Abstract Background Bacterial meningitis is still a cause of severe neurological disability. The brain is protected from penetrating pathogens by the blood-brain barrier and the innate immune system. The invading pathogens are recognized by pattern recognition receptors including the G-protein-coupled formyl peptide receptors (FPRs), which are expressed by immune cells of the central nervous system. FPRs show a broad spectrum of ligands, including pro- and anti-inflammatory ones. Here, we investigated the effects of the annexin A1 mimetic peptide Ac2-26 in a mouse model of pneumococcal meningitis. Methods Wildtype (WT) and Fpr1- and Fpr2-deficient mice were intrathecally infected with Streptococcus pneumoniae D39 (type 2). Subsequently, the different mice groups were treated by intraperitoneal injections of Ac2-26 (1 mg/kg body weight) 2, 8, and 24 h post-infection. The extent of inflammation was analyzed in various brain regions by means of immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR) 30 h post-infection. Results Ac2-26-treated WT mice showed less severe neutrophil infiltration, paralleled by a reduced induction of pro-inflammatory glial cell responses in the hippocampal formation and cortex. While meningitis was ameliorated in Ac2-26-treated Fpr1-deficient mice, this protective effect was not observed in Fpr2-deficient mice. Irrespective of Ac2-26 treatment, inflammation was more severe in Fpr2-deficient compared to Fpr1-deficient mice. Conclusions In summary, this study demonstrates anti-inflammatory properties of Ac2-26 in a model of bacterial meningitis, which are mediated via FPR2, but not FPR1. Ac2-26 and other FPR2 modulators might be promising targets for the development of novel therapies for Streptococcus pneumoniae-induced meningitis.


Sign in / Sign up

Export Citation Format

Share Document