Effects of Rock Dust Particles on Airway Mucus Viscosity

Author(s):  
Yi-Yen Tsai ◽  
Carlos I. Vazquez ◽  
Ruei-Feng Shiu ◽  
Ashely K. Garcia ◽  
Clarence Le ◽  
...  
2019 ◽  
Vol 362 ◽  
pp. 67-76 ◽  
Author(s):  
Timur O. Khaliullin ◽  
Elena R. Kisin ◽  
Naveena Yanamala ◽  
Supraja Guppi ◽  
Martin Harper ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 276
Author(s):  
Lei Pan ◽  
Sean Golden ◽  
Shoeleh Assemi ◽  
Marc Freddy Sime ◽  
Xuming Wang ◽  
...  

Respirable coal mine dust (RCMD) particles, particularly the nano-sized fraction (<1 μm) of the RCMD if present, can cause severe lung diseases in coal miners. Characterization of both the particle size and chemical composition of such RCMD particles remains a work in progress, in particular, with respect to the nano-sized fraction of RCMD. In this work, various methods were surveyed and used to obtain both the size and chemical composition of RCMD particles, including scanning electron microscopy (SEM), scanning transmission electron microscopy (S-TEM), dynamic light scattering (DLS), and asymmetric flow field-flow fractionation (AsFIFFF). It was found that the micron-sized fraction (>1 μm) of RCMD particles collected at the miner location, from an underground coal mine, contained more coal particles, while those collected at the bolter location contained more rock dust particles. Two image processing procedures were developed to determine the size of individual RCMD particles. The particle size distribution (PSD) results showed that a significant amount (~80% by number) of nano-sized particles were present in the RCMD sample collected in an underground coal mine. The presence of nano-sized RCMD particles was confirmed by bulk sample analysis, using both DLS and AsFIFFF. The mode particle size at the peak frequency of the size distribution was found to be 300–400 nm, which was consistent with the result obtained from SEM analysis. The chemical composition data of the nano-sized RCMD showed that not only diesel particles, but also both coal and rock dust particles were present in the nano-sized fraction of the RCMD. The presence of the nano-sized fraction of RCMD particles may be site and location dependent, and a detailed analysis of the entire size range of RCMD particles in different underground coal mines is needed.


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


2003 ◽  
Vol 9 (4) ◽  
pp. 67-72 ◽  
Author(s):  
Yu.O. Klymenko ◽  
◽  
О.К. Cheremnykh ◽  

2013 ◽  
Vol 16 (12) ◽  
pp. 1063-1074 ◽  
Author(s):  
Praveen K. Sharma ◽  
Anita Tiwari ◽  
Rajendra K. Chhajlani

Sign in / Sign up

Export Citation Format

Share Document